理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於對比式訓練之輕量化開放詞彙的關鍵詞辨識
    (2024) 楊宥芩; Yang, You-Chin
    隨著智慧裝置的普及,關鍵詞辨識技術變得越來越重要,其目標是在連續語音中識別是否存在特定的關鍵詞,這項任務極具挑戰性,因為它不僅需要準確地檢測關鍵詞,還需要有效地排除其他關鍵詞。隨著深度神經網絡的快速發展,採用深度神經網絡的關鍵詞辨識在精準度上取得了顯著進步。傳統基於深度神經網絡的關鍵詞辨識系統需要大量目標關鍵詞的語音作為訓練資料,因此只能識別固定的關鍵詞,且在訓練完成後難以替換關鍵詞。若需要替換關鍵詞,則必須重新收集目標關鍵詞的語料並重新訓練模型。本文聚焦於實作一個開放詞彙的關鍵詞辨識系統。該系統通過自注意力機制,利用語音特徵與文本嵌入向量生成有效的聯合嵌入,並藉由辨別器對聯合嵌入計算信心分數。系統依據這些信心分數來決定是否啟動系統。同時,透過對比式學習來處理在設定多個關鍵詞時,錯誤關鍵詞的信心分數過高而產生的誤報問題。在預訓練音頻編碼器時,我們除了使用包含5000類關鍵詞的語料進行分類任務訓練的預訓練音頻編碼器外,還採用了更加節省參數的音頻編碼器架構,能夠減少100K的參數,並通過500類關鍵詞進行分類任務的預訓練。本研究在識別10個未在訓練階段出現的新關鍵詞上,達到了94.08%的準確率,相較於基準方法提升了12%。
  • Item
    應用對比式演算法則於印刷電路板的自動元件檢測方法之研究
    (2023) 鍾暿峒; Chung, Si-Tung
    在現今工業的生產製程中,檢測產品上的瑕疵常會利用到自動光學檢測,透過將攝影裝置架設在產線上進行檢測。而印刷電路板做為電子工業製品的大宗,檢測上方的細小元件的數量和位置是一大難題。由於電子元件種類繁多,為了自動化檢測元件,建立並訓練類神經網路模型被視為一種解決方法。因為模型可以從大量的樣本中學習到特徵而且具備很高的辨識準確度,而其計算過程可以透過GPU的並行處理能力得到很快的推論速度。良好的模型架構可以讓模型適應不同的元件種類,同時對於增減元件可以具有更高的可擴展性來應對需求的變化。然而,現有的物件檢測模型對於小目標的檢測還無法達到高準確度,而工廠產線上的環境光源變化也增加了模型辨識元件的困難度。因此,對於現有的自動元件檢測方法,本論文以對比式理論為基礎,提出了一套使用在類神經網路模型的訓練方法。經過此方法訓練的模型可以在不同環境光線的影響下,依然能正確檢測出印刷電路板上的電子元件。由於工廠的產線不會只生產同一種產品,元件檢測方法應該要能夠應對不同的需求。但是,若元件的種類增加,會降低現有方法辨識的準確度。因此,本論文提出具有高度彈性的模型架構,可以根據不同的元件種類調整,且能檢測多種元件,也具有高準確度。實際情況下,待檢測的印刷電路板並非固定在產線上。若要做到Real-time檢測,需要邊緣運算裝置與攝影裝置搭配使用。而邊緣運算裝置的硬體資源有限,具備高準確度的模型往往有很大的計算量和總參數量。因此,本論文的模型架構會在增加少量參數的同時維持辨識的準確度,並能夠在邊緣運算裝置上正常運行。