理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    奈米碳管分子結間電子傳輸與干涉現象之第一原理研究
    (2013) 陳凱榆
    本篇論文以奈米碳管(Carbon Nanotube, CNT)與分子結構所形成的一維系統為題,利用第一原理(Ab initio)方法計算其傳輸性質;依據分子結構的不同,發現會有干涉現象的產生。藉由與緊束縛模型(Tight Binding model)所得的結果相互比對,透過傳輸係數(Transmission Coefficients)及態密度(Density of States, DOS)的分析,可歸納出影響類似此種結構之奈米電子元件的電子傳輸性質為何,並且進一步地了解量子傳輸理論(Quantum Transport Theory)。
  • Item
    奈米碳管電極之間分子結的電子傳輸研究
    (2017) 林明寬; Lin, Ming-Kuan
    本篇論文以斜切的armchair奈米碳管(carbon nanotube)作為分子結(molecular junction)中的電極。使用緊密束縛模型(tight-binding model)計算斜切的armchair奈米碳管、直切的armchair奈米碳管和直切的zigzag奈米碳管從表面到內部的局域態密度(local density of states)。直切的armchair奈米碳管和直切的zigzag奈米碳管的每一層局域態密度分別顯示三層循環的週期性振盪和局域的邊緣態(edge state)。斜切的armchair奈米碳管不只具有週期性振盪,也具有局域的邊緣態。在局域態密度的研究之後,我們把一條或兩條多烯(polyene)接在兩個斜切的armchair奈米碳管之間作為分子結。使用緊密束縛模型和第一原理(ab initio)方法研究分子結的電子傳輸性質。One-polyene分子結在費米能量(Fermi energy)的傳輸(transmission)數值接近1,所以它恢復了一條電子傳輸通道。Two-polyene分子結在費米能量的傳輸數值在0和2之間變化,所以它顯示了干涉效應。儘管緊密束縛模型和第一原理的結果大致相同,但是從這兩種方法得到的結果還是有不一致之處。藉由調整緊密束縛模型中參數的大小,研究分子結的傳輸性質如何變化。我們發現分子結的傳輸性質會受到來自於分子內的鍵結(intra-molecular bonding)強度、耦合(coupling)強度和on-site energy的影響。
  • Item
    動態光散射在氣體對亞微米尺度膠體分散體穩定性的影響的研究
    (2015) 鄭璋駿; Jeng, Jang-Jiunn
    我們研究氣體對膠體分散體問定性的影響。分別使用油(dodecane and squalane)和多層奈米碳管作為分散向,使其分散在水或是去氣體水中,樣品中不加入界面活性劑。利用動態光散射溶液中的油滴或是碳管團塊的大小進行量測,以觀察膠體溶液的穩定度。我們架設了一台動態光散射儀,並使用直徑38nm、500nm、1μm的聚苯乙烯小球進行校正。從指數函數與累積量展開擬合可以得到與樣品相符合的粒徑大小。但CONTIN的分析結果,無法確定可以得到愈樣品相符合的粒徑分布。在使用油進行的無界面活性劑乳膠溶液的實驗中,我們發現與水相比在去起體水中,油可以較容易的形成很小的油滴並可以較穩定的分散在水中,並在完成的乳膠溶液中加入氣體,對樣品的穩定性影響不大。在使用多層奈米碳管的實驗中,我們發現使用去起體水可以做出至少能穩定存在半個月的奈米碳管膠體分散體;而若是使奈米碳管膠體分散體與空氣劇烈混合,則會有明顯的聚合、沉澱現象。
  • Item
    含胺基取代聯吡啶釕錯合物修飾奈米碳管之研究與應用
    (2013) 張庭瑜; Ting Yu Chang
    有鑒於[Ru(bpy)3]2+衍生物具有獨特光電化學性質以及5-胺基菲羅啉(簡稱NH2-phen)可進行氧化聚合反應,本論文便以NH2-phen與[Ru(bpy)2]Cl2製備[Ru(bpy)2(NH2-phen)]2+,再藉由化學還原修飾法將其修飾於奈米碳管(簡稱MWNT )表面,以探討其應用潛力。根據螢光圖譜分析、原子力顯微術以及穿隧電子顯微術影像,我們證實 [Ru(bpy)2(NH2-phen)]2+可經由化學還原修飾法吸附於碳管表面,而吸附速率與[Ru(bpy)2(N2-phen)]2+經偶氮化後脫氮的反應速率有關,並與反應條件,如時間、溫度、維生素C以及亞硝酸鈉的濃度有關。本論文也以含[Ru(bpy)2(phen-NH2)]2+的修飾碳管微粒作為光敏劑,藉以誘發Thionine chloride進行氧化聚合反應。實驗結果顯示此修飾微粒可在UV光照射下加速Thionine chloride氧化聚合。此外,我們也將該奈米碳管製成修飾電極,藉以檢測葡萄糖、維生素C、尿酸以及NADH,發現修飾有[Ru(bpy)2(NH2-phen)]2+的碳管比未修飾的碳管具有較高靈敏度,可知[Ru(bpy)2(NH2-phen)]2+具有生化感測的應用潛力。
  • Item
    修飾奈米碳管以模仿雙核有機金屬催化劑
    (2016) 黃雨柔; Huang, Yu-Jou
    面臨能源短缺和環境汙染問題,發展永續能源是當務之急。太陽能驅動的水裂解反應(Water splitting)是解決能源危機和環境污染問題的一個理想途徑。其中,水氧化步驟為此反應過程的瓶頸反應,所以如何製備出高效能水氧化催化劑(Water oxidation catalysts, WOCs)是一個重要的議題。因此,在本研究中,我們運用理論計算方法建構一個氮參雜單層奈米碳管(N-doped single wall carbon nanotube)的化學分子模型,並探討此催化劑在水裂解反應過程中的催化效果。 首先,我們利用自旋極化密度泛函理論(spin-polarized DFT)來探討不同曲率之碳管模型的穩定性以及其水分子吸附能。此外,在電化學催化部分,除了使用密度泛函理論之外並加入凡德瓦爾(Van der Waals)作用力(DFT-D3)作計算。我們預想模型中的兩個活化位皆發生氧化反應,則可得知在水氧化過程中中間物(intermediate)的自由能大小及反應過電壓。 管徑為(5,5)、(6,6)、(7,7)、(8,8)、(10,10)之奈米碳管皆可進行水氧化反應,其過電壓大約在0.477至0.605伏特之間,比大部分的金屬塊材與金屬氧化物來的小。因此,這類的奈米碳管有較好的水氧化催化效果。然而,管徑為(12,12)之奈米碳管無法形成1212_1_2O的模型。在本研究中,我們成功地建構出高效能的水氧化催化劑——氮參雜單層奈米碳管。此模擬結果對未來水氧化催化劑的合成與應用具有重要的意義。
  • Item
    利用理論計算來研究如何合成及修改奈米碳管
    (2016) 葉相均; Yeh, Hsiang-Chun
    奈米碳管的應用非常的廣泛,經過各種類型的研究,碳管在催化上能夠有良好的效果,其重點是研究各種缺陷位對於碳管之貢獻,而這裡則鎖定於graphite-like型式的氮參雜缺陷為主體,先比較四個氮的缺陷與三個氮的缺陷位的性質,也考量參雜不一樣的金屬原子,比較其形成能的變化趨勢,在觀察吸附不同小分子的吸附能,發現其3N與4N兩種不同的缺陷,形成完全不同的配位場。   接著利用包含空位缺陷,stone-wales缺陷,氧氣吸附的吸附位,與含氮之缺陷位,這幾種類型是可能在合成碳管中出現的結構,找出其不同類型的缺陷位所擁有的關聯性,來加以判斷在合成碳管的過程中,其可能的趨勢為何種情況,最後,為了能夠控制出其缺陷位之形狀,而也找出一種能夠修復空位太大之情況。