理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    半導體材料GaSe1-xSx ( 0 ≦ x ≦ 1)之光譜性質研究
    (2010) 黃姿方; Tz-Fang Huang
    我們研究非線性光學半導體GaSe1-xSx (x = 0.00、0.01、0.03、0.14、0.18、0.26、0.37 及 1.00 ) 單晶塊材的光譜性質。首先,GaSe的拉曼散射光譜顯示四個拉曼活性振動模,其頻率位置在134 cm-1、212 cm-1、250 cm-1及307 cm-1,拉曼峰頻率位置隨著摻硫離子濃度上升而有藍移的現象;當x ≧ 0.18 時,我們觀察到多了一個160 cm-1拉曼峰,隨著摻雜硫離子濃度增加而對應到GaS的188.5 cm-1拉曼峰,這些拉曼散射光譜的變化與GaSe1-xSx層狀堆疊結構的改變有緊密的關聯性。此外,我們觀察到光激螢光光譜在x ≧ 0.18 時,其螢光峰的半高寬明顯變寬,且峰值的光子能量大於能隙,推測此時樣品與GaS同屬間接半導體,而多出來的能量即為聲子放射所造成。 我們進一步研究GaSe1-xSx的室溫全頻光譜與變溫穿透光譜,其中紅外聲子吸收峰隨著摻雜硫離子濃度上升而有藍移現象;由於摻雜硫離子後層間距離縮小,電子與離子作用距離較短因此作用力較強,所以造成能隙上升的現象;我們觀察到不同硫離子濃度樣品能隙的溫度變化率,在x ≧ 0.18 時略為上升後下降與低摻雜樣品的變化不同,此結果亦呼應堆疊結構的變化。最後,我們藉由使用第一原理理論計算GaSe在Γ點的聲子振動特性,並與拉曼散射光譜實驗及紅外光活性振動的實驗結果進行比較。
  • Item
    對奈米碳管電極間的分子結之第一原理研究
    (2009) 李欣翰; Lee, Hsin-Han
    早期傳統上探討穿透係數Transmission(電子在特定能量的傳輸效應)或電導率Conductivity(電子在整體能量的傳輸效應)大多針對以電極夾接塊材元件的系統是以電極間夾入塊材的系統,整體上,元件及電極仍維持晶體的性質。1980年代之後因製成技術的突破,而漸漸發展出奈米元件,或甚至是電極間以單一分子結 (single molecule junction銜接的系統),這探討這些尺度小於電子平均自由徑的元件系統,必須考慮量子傳輸(quantum transport)的模型。 由於實驗上的方便,起初研究單一分子結多是以金屬當做電極。在之後有實驗做出以奈米碳管為電極的single molecule junction [1,2],這樣的系統有別於在許多junction裡,金屬與分子間定義不清的鍵結,及不確定的幾何形狀,奈米碳管與分子間形成共價鍵的系統比較牢固,加上奈米碳管特有的quasi 1-dimension特性,使之更有研究價值。近年來對分子電子元件中量子傳輸的探討,是很受注目的課題, 本篇論文使用第一原理計算(ab-initio)探討奈米碳管電極間分子結的穿透係數,我們使用以密度泛函理論DFT(Density Function Theory)為架構的McDCAL(McGill-Device-CALculator)進行一系列的模擬分析。我們計算在chiral vector 為 (8,8) 的單層奈米碳管SWCNT(single wall Carbon Nano-Tube)之間以兩個等長的聚烯(polyene)分子構成的分子,然後和Tight binding理論計算的結果進行比對。而穿透係數是重要的基本特性之一,對分子電子元件的電流能有所了解,可用於I-V curve 的計算。
  • Item
    奈米碳管分子結間電子傳輸與干涉現象之第一原理研究
    (2013) 陳凱榆
    本篇論文以奈米碳管(Carbon Nanotube, CNT)與分子結構所形成的一維系統為題,利用第一原理(Ab initio)方法計算其傳輸性質;依據分子結構的不同,發現會有干涉現象的產生。藉由與緊束縛模型(Tight Binding model)所得的結果相互比對,透過傳輸係數(Transmission Coefficients)及態密度(Density of States, DOS)的分析,可歸納出影響類似此種結構之奈米電子元件的電子傳輸性質為何,並且進一步地了解量子傳輸理論(Quantum Transport Theory)。
  • Item
    奈米碳管電極之間分子結的電子傳輸研究
    (2017) 林明寬; Lin, Ming-Kuan
    本篇論文以斜切的armchair奈米碳管(carbon nanotube)作為分子結(molecular junction)中的電極。使用緊密束縛模型(tight-binding model)計算斜切的armchair奈米碳管、直切的armchair奈米碳管和直切的zigzag奈米碳管從表面到內部的局域態密度(local density of states)。直切的armchair奈米碳管和直切的zigzag奈米碳管的每一層局域態密度分別顯示三層循環的週期性振盪和局域的邊緣態(edge state)。斜切的armchair奈米碳管不只具有週期性振盪,也具有局域的邊緣態。在局域態密度的研究之後,我們把一條或兩條多烯(polyene)接在兩個斜切的armchair奈米碳管之間作為分子結。使用緊密束縛模型和第一原理(ab initio)方法研究分子結的電子傳輸性質。One-polyene分子結在費米能量(Fermi energy)的傳輸(transmission)數值接近1,所以它恢復了一條電子傳輸通道。Two-polyene分子結在費米能量的傳輸數值在0和2之間變化,所以它顯示了干涉效應。儘管緊密束縛模型和第一原理的結果大致相同,但是從這兩種方法得到的結果還是有不一致之處。藉由調整緊密束縛模型中參數的大小,研究分子結的傳輸性質如何變化。我們發現分子結的傳輸性質會受到來自於分子內的鍵結(intra-molecular bonding)強度、耦合(coupling)強度和on-site energy的影響。
  • Item
    理論計算探討教(1)HFCO + nH2O(n=1,2)之反應機構(2)N-H鍵活化反應機構: Ni(0) + NH3 -> NiNH + H2
    (2008) 蔡武宏
    本論文分為三大主題: 第一部分: 理論計算探討HFCO + H2O 的反應機構 在ab initio MP2/6-311++G(d,p) 的理論計算層級下,討論HFCO + H2O 反應的可能反應機構,並對反應物、反應中間體、過渡態及產物進行全面性的幾何優選。考慮了三條可能的反應途徑: 催化反應、協同和逐步的水解反應機構。其中,以催化反應直接生成HF 和CO 所需的活化能障29.6 kcal/mol為最低,且其所成的產物複體在熱力學上較為穏定的。在水解機構方面,協同反應所需的活化能為33.0 kcal/mol,較逐步反應的活化能要低些。水解逐步反應所需的活化能為42.1 kcal/mol,為此一研究中活化能障最高者。 第二部分: 理論計算探討HFCO + 2H2O 的反應機構 採用ab initio MP2/6-311++G(d,p)研究了Formyl Fluoride 與二分子H2O在氣相中的反應機構。考慮了三條可能的反應途徑: 催化反應、協同和逐步的水解反應機構。計算結果表明氣相中催化反應是最優途徑,其所需的反應活化能為24.9 kcal/mol,且其所產生的產物複合物能量為位能圖中能量最低者。而在水解反應部分,反應中的一分子H2O為反應物,而另一H2O分子為催化劑,活化能則是逐步反應較協同反應為低,但二者並無明顯的差異,分別為29.7 kcal/mol與30.6 kcal/mol。 第三部分: 密度泛函理論計算探討N-H鍵活化: Ni (0) + NH3 à NiNH + H2的反應機構 在密度泛函B3PW91/6-311++(2d,2p)及 B3PW91/6-311++G(3df,2p)的理論基礎上,探討了三重態與單重態鎳原子與氨分子的反應。除了結構外,我們也利用Wiberg鍵級說明了反應路徑上各個中間體與過渡態的鍵結傾向。結果顯示,單重態和參重態的Ni與NH3反應產生NiNH及H2反應在熱力學上均屬於吸熱反應,其反應熱相對於反應物Ni + NH3分別是單重態的10.61 kcal/mol及參重態的36.99 kcal/mol。
  • Item
    理論化學之研究:1. 由氨基丙二腈生成甘胺酸之反應機制 2. 1,3-丁二烯與1,4-二氮-1,3-丁二烯進行共軛雙烯[四加二]環加成反應(Diels-Alder)時,位能曲面與分子軌域作用之關係
    (2006) 朱鴻舜
    本論文分為兩大主題:一、由氨基丙二腈生成甘胺酸之反應機制。甘胺酸是蛋白質結構中最小的胺基酸,實驗家透過化學演化(chemical evolution)反應,可以利用簡單的無機物分子,合成出包含甘胺酸在內的各種有機分子。此處,我們將研究從氨基丙二腈反應產生甘胺酸的各種反應機制,並且針對部分反應過程中,分子軌域的作用情況予以討論。本研究共分為兩個部分。 第一部分 利用ab initio計算方法,我們針對化學演化中,由氨基丙二腈(amino-malononitrile)到氨基乙腈(amino-acetonitrile)之各種可能的反應路徑加以考慮,並且根據反應物所擁有的各種活化位置,探討其分支反應及其反應機制。反應路徑上所有的駐留點(stationary point)均分別利用HF/6-311G(d,p)和MP2/6-311G(d,p)幾何優選,並利用counterpoise計算方法校正BSSE,以求得位能曲面上的相對能量。此處將主要的結論歸納如下:(i) 比較各種反應機制中所需要的活化能大小,可以確認化學演化之可能性。(ii) 起始物所選擇的反應方向可以利用前線軌域理論(frontier orbitals theory)加以分析,由於H2O HOMO的對稱特性,H2O傾向於和起始物的nitrile group進行反應。(iii) 反應起始物的nitrile group與H2O作用的活化能為49.00 kcal/mol,遠低於後續反應機制中所需之活化能,因此為本研究過程之速率決定步驟。當起始物之nitrile group與H2O作用後,所放出的能量即足以完成後續反應。(iv) Boys-Bernardi counterpoise計算顯示,所有在MP2層次下之BSSE能量修正值均高於HF計算結果。 第二部分 針對最簡單的胺基酸分子,glycine,在自然界中可能的生成過程,本研究利用ab initio分子軌域理論計算方法,討論由amino acetonitrile至glycine的多種反應機構及其分支反應。研究結果顯示,最可能的二種反應途徑,在MP2/6-311G**下,其速率決定步驟所需之活化能分別為46.11與52.38 kcal/mol。考慮water-assisted reaction時,僅需一個水分子的加入,即可使能障大幅降低至10.65與21.74 kcal/mol,顯示水分子的加入具有重要的作用。藉由NBO分析其中間產物與過渡狀態,發現反應過程中,分子內作用力將明顯影響反應物之幾何結構、穩定性與反應活化能。進行分子間反應時,前線軌域理論可以提供合理的解釋,從而判斷分支反應中最可能的反應路徑。 二、1,3-丁二烯與1,4-二氮-1,3-丁二烯進行共軛雙烯[四加二]環加成反應(Diels-Alder)時,位能曲面與分子軌域作用之關係。 利用B3LYP/6-311G**研究1,3-丁二烯與1,4-二氮-1,3-丁二烯的各種旋轉異構物,於Diels-Alder反應時可能產生的各種反應途徑與過渡狀態。由於1,3-丁二烯與1,4-二氮-1,3-丁二烯均可扮演diene或dienophile,因此將產生兩種反應途經相互競爭。研究結果顯示,1,3-丁二烯通常傾向於扮演diene的角色,此時HOMO-LUMO secondary interaction以及立體結構互斥作用將影響到反應的活化能。由於二分子相互靠近時,反應能障主要受到特定π軌域之間的互斥作用所影響,其餘各分子軌域之間的安定作用和排斥作用則將大致相抵。因此,當軌域的能量過於接近時,將導致互斥作用增加而能障提升。然而,若反應物MO間的能量間隙過大,幾何結構在反應過程需要大幅度扭轉變形以增加軌域間的重疊度,將導致活化能上升。