理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    甲醇氧化反應在鉑釕雙金屬奈米粒子的催化活性探討
    (2023) 梁文翰; Liang, Wen-Han
    直接甲醇燃料電池(DMFCs)因高能量密度、環境污染低以及攜帶方便等優點,成為替代化石燃料的綠色能源之一。改善其陽極上的甲醇氧化反應(MOR)之緩慢動力學,可以進一步加速直接甲醇燃料電池的發展。本文研究直接甲醇燃料電池陽極觸媒中具有前途的雙金屬Pt-Ru 奈米粒子,其結構與電子效應對甲醇氧化反應之影響。本實驗使用多元醇合成法來製備陽極觸媒,其中乙二醇作為還原劑以及溶劑,藉由調控pH值形成不同晶粒尺寸。鑑定觸媒的結構與組成是藉由高解析穿透式電子顯微鏡(HRTEM)、能量色散X射線譜(EDX)、紫外/可見光光譜儀(UV-Vis)、粉末式X光繞射儀(PXRD)、X射線光電子能譜(XPS),測試觸媒的甲醇氧化之活性是使用循環伏安法(CV)與計時安培法(CA)。從實驗結果觀察到用多元醇合成的觸媒Pt3Ru-10(241.9 mA/mgpt)其質量活性(MA)與市售Pt/C(134.2 mA/mgpt)相比,有將近兩倍的增長其因是Ru的協同效應作用,並且也觀察到在最鹼的環境下合成之觸媒因結構效應的作用,有最好的質量活性。
  • Item
    鉑錫合金奈米棒觸媒之氧化程度對直接甲醇燃料電池的電化學催化效果研究
    (2022) 李鑑鈞; Li, Chien-Chun
    直接甲醇燃料電池(DMFCs)是透過將甲醇燃料以化學能形式直接轉換成電能的一種電池,其可攜帶性使之成為極具發展潛力的供電裝置。在此研究中分別藉由實驗與理論計算兩個面向來檢定DMFCs中的甲醇氧化反應(MOR),並通過此研究揭示將Pt與具高度親氧性Sn進行氧化後,其對陽極觸媒PtSn所造成的重要影響。關於實驗部分,原先的Pt3Sn nanorods(NRs)是透過甲酸還原法所合成,隨後透過改變不同溫度(150, 200, 250與300oC)與加溫時間(1, 1.5, 3與5 hr)的氧化後處理過程進行各式樣品的製備。其中經由不同的氧化條件所得到的PtSn NRs氧化程度皆不盡相同,所以藉HRTEM, XRD, EDX, XPS對觸媒的表徵進行鑑定,並由電化學測試瞭解其MOR的催化能力。透過實驗的結果可以發現,當Pt3Sn NRs在經過200oC加熱氧化三小時的條件下擁有約54 %的表面氧化度,也具備最為優異的MOR活性與觸媒穩定性。計算的部分則分別探討甲醇在乾淨與經過氧化(表面具有氧原子吸附)的Pt表面、NR模型的脫氫反應及氧化反應。由結果顯示出,無論是乾淨的Pt表面亦或是NR,(100)面皆擁有較低的脫氫反應能與反應能障。之於經過氧化的表面,(100)面的氧化反應可以得到更進一步的提升。NR則因為同時具備(100)與(111)表面,且在side位點擁有最穩定的氧吸附。因此亦如實驗的結果,其將展現最優異的MOR催化活性與觸媒穩定性。
  • Item
    覆鉑、銠於鉬針形成金字塔單原子針尖之研究
    (2012) 陳曉琪
    本實驗藉由場離子顯微鏡研究覆鉑鉬針及覆銠鉬針,在加熱退火後的皺化行為。覆鉑鉬針實驗中發現,加熱退火溫度在800K以下,針尖上的各指數面,並無明顯變化。在加熱退火溫度超過800K,可觀察到通道面的擴張行為。當加熱退火溫度達到900K,{211}切面劇烈的擴張並造成明顯的皺化行為,加熱退火至1100K金字塔稜線已經明顯形成,並且可成長出單原子級針尖,其最上方三層的金字塔結構分別為1、3、10及1、6、15顆原子的堆疊。 在覆銠鉬針的實驗中發現,在加熱退火溫度至1100K時,同樣可以成長出單原子級針尖,其最上方三層的金字塔結構分別為1、3、10及1、6、15顆原子的堆疊。 藉由覆鉑鉬針可以研究多稜線現象的行為,在加熱退火至800~900K可以觀察到多稜線現象的產生,金字塔稜線數目隨著加熱退火溫度逐漸下降,在加熱退火溫度接近900K時,則收斂至三對稱的單條稜線。
  • Item
    鈷在鉑上形成超尖磁性奈米針尖之研究
    (2009) 江佳倫; Chia-lun, Chiang
    我們利用場離子顯微鏡在超高真空的環境中觀察兩種磁性奈米針尖的成長,一種是利用表面皺化機制形成的鈷鉑合金金字塔形奈米針尖;另一種是藉由鈷在鉑(111)面的S. K. mode長成以鉑為基底的鈷奈米針尖。前者針尖生長於皺化形成的鈷鉑合金多面體之稜線交接處,分別位於{531}及{210}切面,{531}切面的金字塔是由擴張的{111}、{110}、{311}切面堆積,{210}切面的金字塔則由擴張的{110}及兩個{311}切面組成。而後者針尖是在室溫及20K時鍍鈷4~5ML於鉑(111)面,鈷原子先依鉑基底以FCC結構排列,再於其上堆積單顆、雙顆或三顆原子團,這些在鉑(111)面成長的鈷原子團即是一種無特定針形的奈米針尖。
  • Item
    鐵薄膜與鉑基底間溫度相依的介面擴散行為
    (2009) 蔡蕙雅; Hui-Ya Tsai
    我們利用歐傑電子能譜術配合離子濺射,觀察隨離子濺射打掉表面原子系統表面的組成變化,分析1ML Fe/Pt(111)系統經升溫熱退火後鐵原子的擴散情形,並搭配理論估算鐵在合金各層的分布比例。 觀察570K,700K,910K熱退火後的鐵原子擴散,經由歐傑縱深分析後發現鐵原子大部份分布在表面前兩層至第三層,其中700K與910K鐵原子與白金在表層混合均勻,同時配合理論估算得知700K熱退火後,鐵原子在第一層佔73%,在第二層佔23%;910K熱退火後鐵原子在第一層佔 70%,第二層佔21%,比例差異不大。 1017K下的鐵原子則已經鑽入內層與白金均勻混合成類似塊材合金的結構。以理論估算得知鐵原子在每一層比例佔11%至15%,表示鐵原子往內層擴散並與白金混合均勻。
  • Item
    鐵超薄膜在白金(111)面上的成長
    (2007) 許宏彰
    我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鐵超薄膜鍍於Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。 室溫下,鐵薄膜鍍於Pt(111)的成長模式為三層平整成長之後再以三維島狀的S. K. mode。由AES、LEED均能得到相同的結論。而隨著厚度的增加也可以發現在表面有Domain Rotation的行為。因此在LEED Pattern出現了新的衛星亮點。 1,2 與 5 ML Fe/Pt(111)升溫過程各自在520、570與620 K開始在界面擴散;而在670、670與720 K時,開始有合金的行為;而對於2與5 ML的系統,在820與870 K時Domain Rotation的行為隨著溫度的昇高而消失。對於1 ML 深溫至1060 K時,由於表面的重構使得表面鉑原子間距加大,LEED Patternt出現新的(1x1)繞射亮點。
  • Item
    烷基碘在Pt(111)表面上的吸附行為及熱分解反應
    (2006) 吳凱煜
    在超高真空下,探討烷基碘( alkyl iodide,R-I )化合物在Pt(111)表面的吸附及熱分解反應。以程溫脫附法( temperature-programmed desorption,TPD )偵測脫附產物。並以同步輻射光為光源的X-ray光電子能譜( X-ray photoelectron spectroscopy,XPS )分析升溫過程中吸附物的化學組態變化。綜合TPD與XPS的數據,提出烷基碘在鉑表面的反應及分解機制。 低覆蓋率的條件下,所有化學吸附的烷基碘分子在低於200K的溫度會分解成烷基與碘原子,烷基會進行脫氫反應,氫原子結合以分子形式脫附,留下殘碳於表面。在較高的覆蓋率之下,隨著溫度逐步升高,物理吸附的烷基碘會先脫附出來,接著化學吸附的烷基碘則是斷裂C-I鍵,生成烷基與碘原子,烷基除了與氫原子鍵結,還原生成烷類脫附;具有β-H的烷基會以β-hydride elimination生成烯類,以di-σ bonding的方式鍵結在表面,有一部分烯類脫附離開表面。在更高的溫度下,烯類會再進行脫氫反應,一連串的去氫反應後,氫原子在400~500K結合產生氫分子脫附,最後留下殘碳於表面。 比較不同級數烷基的反應結果,得知三級與二級烷基因為立體障礙的因素,氫原子較不易與烷基鍵結,所以烯類與烷類的比例相差較大。
  • Item
    金屬奈米粒子之尺寸和形狀控制及其對乙醇氧化反應的影響
    (2014) 楊皓雯
    本篇論文使用化學還原法合成了Pd、Pt、Ag、Au四種金屬的不同形狀、尺寸奈米粒子,並測試其對乙醇氧化的催化反應。藉由調整界面活性劑、還原劑及其他反應條件,來控制奈米粒子的尺寸和形狀。使用了穿燧式電子顯微鏡、X光繞射分析儀、和紫外-可見光光譜儀作特性鑑定,並沈積到支撐物氧化鋁上,作乙醇氧化的催化活性測試。 實驗結果發現,尺寸較小的Ag、Pd和方形Pd奈米粒子有較強的斷碳-碳鍵能力,能有效地使乙醇氧化成乙醛和二氧化碳;而Pt奈米粒子僅在斷碳-碳鍵的能力上有所提昇,生成較多的一氧化碳。另一方面,縮小Au奈米粒子的尺寸不僅能夠有效地提昇氧化能力,增加對乙醛的選擇率,同時也能夠減少乙烯的產生,避免形成碳沉積。