理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    鎳/鈷/鉑(111)及鈷/鎳/鉑(111)系統其結構與磁性性質之研究
    (2006) 何慧瑩; Huei-Ying Ho
    本研究論文主要是利用歐傑電子能譜儀(Auger electron spectroscopy; AES),低能量電子繞射儀(low-energy electron diffraction; LEED),紫外光能譜術(ultra-violet photoemission spectroscopy; UPS)、以及磁光柯爾效應儀(magneto-optical Kerr effect; MOKE) 來研究Ni/Co/Pt(111) 及Co/Ni/Pt(111) 鏡像系統其成長模式、合金形成及表面磁性的關係。 根據LEED(0,0)光束強度及AES訊號強度隨蒸鍍時間變化的關係,我們得知在室溫條件下,無論是Ni超薄膜在1 ML Co/Pt(111) 上成長(ML: monolayer),或者是Co超薄膜在1 ML Ni/Pt(111)上成長時,都會先形成2層的層狀成長之後才開始3維的島狀成長。對此二系統而言,其升溫形成合金的過程都可被分成2階段,首先是升溫過程中,Co和Ni會先混合,然後Ni-Co混合層在更高溫時會擴散進入Pt基底,形成Ni-Co-Pt合金。其中,1-3 ML Ni/1 ML Co/Pt(111)系統開始產生Ni與Co混合的溫度皆為420 K,此溫度與Ni覆蓋層的厚度無關;然而對1-3 ML Co/1 ML Ni/Pt(111) 系統而言,產生Ni與Co混合的溫度隨Co覆蓋層的厚度增加而升高。此二系統的Ni-Co混合層開始擴散進入Pt基底形成Ni-Co-Pt合金的溫度,皆隨著覆蓋層的厚度增加而升高。 我們同時也量測在室溫成長時,其磁性隨覆蓋層厚度變化的關係。1層至24層Ni超薄膜在1 ML Co/Pt(111) 成長時,其磁化易軸(the easy axis of the magnetization)會在垂直樣品表面的方向,具有很強的垂直磁異向性(perpendicular magnetic anisotropy; PMA);1至3層Co原子層蒸鍍在1 ML Ni/Pt(111)上,無論是垂直或者是平行樣品表面我們皆量測不到磁滯的訊號,此現象可能與Ni緩衝層阻隔了Co與Pt接觸有關。樣品經過升溫效應所產生的磁性變化其擴散過程一致。經過高溫處理過後的樣品形成了Ni-Co-Pt合金,合金的矯頑力(coercivity)大小可經由升溫時產生的合金濃度變化來控制。 根據比較1 ML Ni/1 ML Co/Pt(111)與1 ML Co/1 ML Ni/Pt(111)的實驗結果,我們發現當退火溫度(annealing temperature)介於750 K 和780 K之間時,表面合金結構會由NixCo1-xPt轉變成NixCo1-xPt3,藉由計算接近居禮溫度(Curie temperature)時的值(critical exponent),我們得知此時表面的磁性結構亦由2維磁性結構的轉變成3維磁性結構,並且,在表面合金結構由NixCo1-xPt轉變成NixCo1-xPt3之時,居禮溫度隨退火溫度升高而下降的現象變得更明顯。此外,在相同退火溫度條件下,1 ML Ni/1 ML Co/Pt(111)系統的居禮溫度一直比1 ML Co/1 ML Ni/Pt(111)系統的居禮溫度高,我們認為這種現象與Ni、Co的成分比有關。我們也經由研究2 ML Ni/1 ML Co/Pt(111)、2 ML Co/1 ML Ni/Pt(111)、12 ML Ni/1 ML Co/Pt(111)、以及24 ML Ni/1 ML Co/Pt(111)等系統來探討Ni、Co的成分比對居禮溫度的影響。 另一組鏡像系統,2 ML Ni/2 ML Co/Pt(111)和2 ML Co/2 ML Ni/Pt(111),經過退火之後,我們意外地發現樣品產生了spin reorientation transition (SRT),這種現象在以1層Co及1層Ni當作緩衝層的系統中,完全沒有被發現過。我們認為Ni、Co的成分比及其分佈的均勻度應是造成此現象的重要因素,在本論文中我們會加以討論。
  • Item
    Co/Fe/Pt(111)的磁性研究
    (2007) 何淙潤
    我們利用表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜在純白金以及鈷超薄膜在鐵與白金所形成的磁性基底上磁性隨著薄膜厚度的變化。 Fe在Pt(111)上的成長,其磁性和薄膜厚度的關係受外加磁場的大小影響而有所不同,利用小磁場可以測得磁化易軸位於in plane方向,隨層數增加到3 ML也是。1 ML Fe/Pt(111)經退火效應後在室溫測量磁滯訊號,發現只有在Longitudinal方向有值,當退火溫度到600 K~650 K時,有SRT發生,800 K時磁滯曲線消失。低溫成長的1 ML Fe/Pt(111)樣品,有垂直異向性(PMA)現象發生,磁化易軸在out of plane方向上。 dCo/1 ML Fe/Pt(111)樣品的磁性探測,隨Co原子的層數增加,其L-MOKE在柯爾訊號和矯頑磁場都會有增強的現象,當蓋上1 ML Co時,有增強P-MOKE的柯爾訊號,隨Co原子層數增加到2 ML以上,P-MOKE消失。分別在1~3 ML Fe/Pt(111)樣品上鍍上1 ML Co原子,發現都有P-MOKE及L-MOKE柯爾訊號增強的情況。 1 ML Co/1 ML Fe/Pt(111)樣品退火處理後,在溫度為400 K上以,原本存在的P-MOKE柯爾訊號消失;溫度在400 K~500 K之間,磁滯曲線沒有明顯的變動,當溫度到達650 K以上,垂直異向性增強,而磁化易軸轉成out of plane,產生SRT現象。 經由以上鐵,鈷薄膜在不同基底的磁性探討,和實驗室之前的研究統整,希望將來能夠把鐵磁性物質在白金上的磁性與結構變化做個完整的探究。
  • Item
    銀覆蓋層對鐵超薄膜在鉑(111)上的磁性影響
    (2007) 郭明憲; Ming-Hsien Kuo
    我們以自製的磁光柯爾效應儀(MOKE)探測Ag超薄膜覆蓋於Fe/Pt(111)樣品前後之表面磁性變化,並藉由歐傑電子能譜術(AES) 鑑別樣品表面組成成分、計算薄膜厚度,以及低能量繞射電子儀 (LEED)研究表面結構,利用升降溫系統與離子濺射進行退火效應與深度分析的實驗。 經由在1~3ML Fe/Pt(111)上逐漸覆蓋不同厚度的銀,發現Polar方向的磁性有增強,而Longitudinal方向有減弱的現象,且在Ag覆蓋達1ML之後就無太大變化。藉由離子濺射的過程,觀察磁性及歐傑訊號強度的變化,確認磁性改變的原因來自於Ag-Fe界面效應的作用。 將1ML Ag/1ML Fe/Pt(111)經由不同溫度的退火處理之後,在室溫量測其磁性與歐傑訊號,發現在低於600 K的退火溫度時,由於Fe原子與Pt原子的交換減弱了Ag-Fe介面引致PMA的作用,使得Polar方向的磁性慢慢消失。在退火溫度介於600 K~700 K之間時,由於Fe跟Pt開始形成合金,使得Polar與Longitudinal方向的柯爾訊號及Hc大幅的增加。當退火溫度超過700 K時,由於Fe原子往下擴散到更底層去而Pt原子往上浮出,以及Ag原子逐漸的退吸附,使得Ag-Fe介面的效應變得更弱,導致Polar方向及Longitudinal方向的磁性逐漸消失。
  • Item
    鉑或銥原子團在鉑表面之擴散研究
    (2008) 高玉娟; Kao Yu Jan
    鉑或銥原子團在鉑表面之擴散研究 使用場離子顯微鏡(FIM)在超高真空(UHV)的環境下,觀察鉑或銥原子團在鉑表面上的擴散運動。當溫度加熱到135K,從三角形場離子影像的方向判斷,單顆鉑在鉑(111)面上只會吸附在FCC site。接著利用觀察時所繪出原子位置地圖(site mapping),分析原子擴散的步數,並代入擴散的波茲曼分佈(Boltzmann distribution),得到鉑在鉑(111)面的擴散活化能為0.33±0.01eV。再根據單顆鉑出現在FCC site 與HCP site的次數與波茲曼分佈的關係,計算出鉑吸附在FCC site的束縛能比在HCP site的束縛能大了0.04eV以上。 其次,觀察中也發現七顆銥原子團(Ir7)在鉑(111)面上,以正六角形的形貌擴散的機率是35/40。統計40次擴散事件,得到擴散活化能為1.41 0.03 eV。綜合比較Ir7/Ir(111)[6]、Ir7/Pt(111)、Pt7/Pt(111)[3]系統,發現原子團在Pt (111)面上,Ir7比Pt7更難擴散,而Ir7在Ir(111)面上卻比Pt(111)面上更難擴散。影響上述擴散難易程度的因素包括吸附原子團內部的束縛能、原子團與基底的交互作用。
  • Item
    以電鍍方法成長Co/Pt(111)薄膜及其磁性研究
    (2015) 郭唯旭; Kuo, Wei-Hsu
    在研究中,使用電化學的方式在水溶液環境中成長Co薄膜在Pt(111)上,透過加入Pb與紫精酸形成完全不同的磁性異質介面,研究Co薄膜受到不同的介面異向能以及不同的量測電位對磁特性的影響,利用循環伏安法(cyclic voltammetry, CV)鑑定成分,並使用磁光柯爾效應(Magneto-optic Kerr effect, MOKE)進行磁特性的量測。 實驗中Co薄膜成長在Pt(111)上並不會形成合金亦不會形成磁性死層,在5 nm 以上時可以穩定存在,不與溶液中的各種離子起化學反應,並且在不同的量測電位可以發現矯頑力會受到電場影響而增強的現象。 在Co/Pt(111)上加入Pb的覆蓋層,發現矯頑力並無明顯變化,推測是Pb只吸附在薄膜上不與Co形成合金態,且並未影響介面結構,導致矯頑力不變。 加入紫精酸則可發現矯頑力受到介面異向能的改變而變化,然而飽和磁化量、殘磁以及方正度均沒有明顯的變化,在不同的電位量測紫精酸對矯頑力的影響,發現紫精酸隨著電位變化,因為各個不同的官能基受到電位影響的能力不同,產生了不同的吸附狀態,使得表面的電子分布不同進而讓表面的鈷原子間自旋或軌道的角動量耦合改變,這樣的現象可近似於表面磁矩間耦合的缺陷增強或減弱而使得矯頑力變化,而這樣的表面現象僅影響薄膜的表面,因此表面特性的貢獻比例會持續隨著膜厚下降,此研究結果發現在此系統中可以利用電位的不同來瞬間控制磁性薄膜的矯頑力變化,極富應用價值。
  • Item
    以理論計算方式探討硫化氫分解與硫氧化反應在純金屬Ni(111)與Pt(111)以及雙金屬Ni@Pt(111)與Pt@Ni(111)表面上的反應機構
    (2011) 葉丞豪
    我們使用週期性密度泛函理論來研究燃料電池中受到硫毒化問題以及氧化去硫的反應,含硫物種如硫化氫容易吸附在燃料電池的電極上並造成硫原子和金屬電極的強烈鍵結使得電極遭受毒化降低反應效能,利用添加氧氣去除硫原子形成二氧化硫分子離開是解決辦法之一。我們計算了純金屬Ni(111)和Pt(111)表面上的硫氧化反應中的關鍵步驟:SO2生成反應中的反應能障分別是1.07 eV以及0.41 eV,顯示在Pt(111)表面上去除硫的效果比在Ni(111)表面上好。而近年來越來越多研究指出使用雙金屬觸媒可以達到比純金屬更好的催化效果,我們的結果顯示在Ni@Pt(111)表面上SO2生成的反應能障為1.86 eV而在Pt@Ni(111)表面上僅需要0.13 eV的能障即會生成SO2。因此歸納對於氧化硫生成SO2的反應而言,其反應能力優劣順序為Pt@Ni(111) > Pt(111) > Ni(111) > Ni@Pt(111),最後經由H2S在Pt@Ni(111)表面上分解會呈現吸熱的低毒化能力以及利用高低覆蓋率(或高低壓)的反應測試中都證明了Pt@Ni(111)表面具備更優於純金屬的抗硫性。