理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    以GHA實現快速主成分分析之硬體設計
    (2012) 林秀菊; Shiow-Jyu Lin
    本論文為實現快速主成分分析之硬體,提出三種GHA的硬體架構,分別為達成高速計算及最少的硬體資源消耗為目的。在高速計算的架構,所有主成分值計算與突觸權重值之更新,皆使用專屬的電路作並行之運算。對於高維度訓練資料之適用架構,以所有主成分值計算共用一個主成分計算電路輪流完成計算,並將訓練資料區塊化方式逐步更新每個神經元的突觸權重值。所有實現的硬體架構訓練取得之權重向量,應用在紋理的分類。
  • Item
    以非監督式類神經網路實現高維度平行計算之主成分分析的硬體架構實現
    (2011) 林坤宏; Kun-Hong Lin
    本論文針對主成分分析(Principle Components Analysis, PCA)提出一個以Generalized Hebbian Algorithm (GHA)為基礎的高維度平行計算之硬體架構。 我們希望利用硬體的特性來達到平行計算能力,進而加速運算效能,同時希望透過擷取高維度的特徵向量來取得較好的分類成功率,在突觸權重向量更新單元,將原本m筆的資料切割成b等分,重複利用q份硬體電路來運算b次,即m=q×b,m指的是訓練資料的維度,b指的是我們將資料切割成幾等分,q指的是每一等分的資料量,如此一來就可達到硬體共享的機制,也將記憶單元共享給不同的計算元件使用,因此可以降低面積成本(Area Cost),也能實現較高維度的硬體架構。 我們將硬體電路實作在可程式化系統晶片(System on a Programmable Chip,SOPC)的平台中,並且利用此平台來測試與驗證實驗數據,根據實驗結果來證明我們所提出的硬體架構,是具有較好的分類成功率及較低的硬體資源消耗,也與軟體做時間測量比較,來驗證硬體的加速效能。
  • Item
    LabVIEW程式架構氣相層析譜峰模式辨識法對薰衣草精油之比對
    (2011) 吳昇鴻; Sheng-Hong Wu
    本實驗利用氣相層析質譜法(GC/MS),得到十六種市售薰衣草香精油層析圖譜,以常見的統計軟體SPSS(Statistical Product and Service Solutions)依照精油成份進行分類。先將層析圖譜中幾個重要成份的譜峰面積取出,分別為1,8桉油醇(1,8-cineol)、沈香醇(linalool)、樟腦(camphor)、龍腦(borneol)、4-松油烯醇(terpinen-4-ol)、α-松油醇(α-terpineol)、乙酸沉香酯(linalyl acetate)、乙酸薰衣草酯(lavandulyl acetate)。將得到的面積利用主成份分析法(Principal Comonents Analysis, PCA)以及群集分析法(Cluster Analysis)進行統計分類,結果各品牌精油有明顯分群,而越是聚集成一群的樣品代表樣品間的相似度越接近,且主成份分析法得到的分群結果與群集分析法得到的分群結果幾乎完全一樣,發現聚集在同群裡的香精油其價格和商譽皆優於分散群外的精油,表示這兩個方法可依照成份比例的不同確實分類各品牌的香精油。 接著利用LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)開發出具有圖譜比對功能的程式,兩圖譜輸入後可得到一數值,此為彼此的相似度,將結果與主成份分析法以及群集分析法做比對,發現被前兩個分析法分在同一群內的樣品彼此相似度高,位於群外和群內的樣品彼此間相似度低,高價格樣品彼此相似度高,高價格與低價格彼此相似度低,這樣的結果和主成份分析法以及群集分析法非常相近。
  • Item
    車漆成分應用於鑑別刑事證據之研究
    (2015) 楊勝雄; Yang, Sheng-Hsiung
    本研究的目標在於開發一套有效的數據處理方法,可以針對車漆樣品的熱解資料得到其分佈的狀態,評估以平均質譜技術結合主成分分析及集群分析應用的可行性及實用性,並進一步延伸數據的價值,為此我們調查國內車漆的配方,並從中歸納15種常見添加成分質譜中的76個質量/電荷(m/z)訊息作為區分與合併樣品的多變量統計分析的指標。另一方面,聚苯乙烯為車漆中常見的成分,由於具有高質譜感受性,經熱裂解氣相層析質譜儀定量後,可發揮高靈敏度及低樣品消耗的優點,經探討聚苯乙烯的熱解性質及評估基質對於定量的干擾情形,我們發展了一套針對少量樣品可以適用的定量方法,可以鑑別不同來源的車漆樣品。本研究所建立的方法均通過國際能力試驗比對及盲樣的檢測以確認其有效性,且優化後的操作過程對例行檢驗的負擔可以減到最低。 綜整以上研究內容,本研究建立的方法從比對個案的定量分析結果,到大範圍的樣品分類,透過仔細及深入的數據比較過程,提供評判證物彼此的關聯性,藉由結合熱裂解氣相層析質譜儀及多變量統計與化學計量分析的方式,解讀微小的車漆樣品在系統中的定位及意涵,展示其證據力的價值內涵與科學意義,相信對於刑事科學研究及實務工作應有相當的助益。