理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    英語口說精熟度之自動化評測技術研究
    (2024) 吳姿儀; Wu, Tzu-I
    none
  • Item
    以深度學習對包含長文之資料集進行情感分析
    (2022) 陳宜威; Chen, I-Wei
    隨著網際網路的蓬勃發展,越來越多的訊息在社群網站、線上購物網站、論壇等各種網路平台間傳遞,而這一些訊息可能都表達了人們的看法或是評價。但是只依靠人力來觀察如此龐大的資訊量是非常沒有效率的,因此如何讓電腦得以代替人類完成這一項工作量龐大的任務是必要的。自然語言處理(Natural Language Processing,NLP)是一種讓電腦可以理解人類語言的技術,而情感分析(Sentiment Analysis)則是NLP其中的一項常見應用。它能夠了解字句間所表達的情緒,比如分析網路上對於某些產品、名人、事件等事物的評論立場為何,像是有好感還是持有負面態度。本實驗使用含有長文的IMDB資料集進行情感分析,該資料集將評論分為正面和負面,並且建立深度學習模型讓它藉由評論內容判斷評論表達的情緒是正面或負面,除了基本的LSTM和BERT模型以外,本實驗還有嘗詴讓BERT合併BERT或LSTM模型,希望藉由增加模型獲得的特徵來提高準確度,並且對各種模型的實驗結果進行比較。
  • Item
    以BERT-CNN模型進行建議句探勘
    (2021) 房昱翔; Fang, Yu-Hsiang
    隨著智慧型手機、行動網路的普及,民眾每天接收到的訊息量與日俱增,其中評論占據了很大一部份,不同於氣象預報、股票市值這些僅能夠單方面接收的資訊,評論往往是由民眾主動去搜尋及撰寫的,舉凡食、衣、住、行、育、樂,許多民眾已經養成先上網搜尋相關評論後再做決定的習慣,本研究希望透過深度學習的方法,將大量的網路評論,在進行完整分析後作出適當的分類。本研究使用的資料集來自於2019年舉辦的國際自然語言語意評測競賽(Semantic Evaluation 2019, SemEval 2019)中的Task 9,該資料集中的評論可分為建議句(suggestion)及非建議句 (non suggestion),將其進行前處理後與類神經網路模型進行連接,其中用到了由Google公司於2018年提出的BERT (Bidirectional Encoder Representations from Transformer)及卷積類神經網路(Convolutional Neural Networks, CNN)。本研究將對該競賽項目的子任務A進行實驗,評估方式採用正確率(Precision) 及F1分數(F1-measure, F1),其中驗證資料集同樣來自SemEval主辦方,並會與當年參加競賽的隊伍進行比較。
  • Item
    使用跨語句上下文語言模型和圖神經網路於會話語音辨識重新排序之研究
    (2021) 邱世弦; Chiu, Shih-Hsuan
    語言模型在一個語音辨識系統中扮演著極為重要的角色,來量化一段已辨識 候選句(詞序列)在自然語言中的語意與語法之接受度。近年來,基於神經網路架 構的語言模型明顯優於傳統的 n 連語言模型,主要因為前者具有捕捉更長距離的 上下文的卓越能力。然而,有鑒於神經語言模型的高計算複雜度,它們通常應用 於第二階段的 N 最佳候選句重新排序來對每個候選句重新打分。這種替代且輕 量級的方法,能夠使用更精緻的神經語言模型以整合任務有關的線索或調適機制 來更佳的重排候選句,已引起了廣大的興趣並成為語音辨識領域中一個重要的研 究方向。另一方面,使用語音辨識系統來有效的辨識出對話語音,對於邁向智能對話 AI 起關鍵重要的作用。相關的應用包含虛擬助理、智能音箱、互動式語音應答... 等等,都無所不在於我們的日常生活中。而在這些真實世界的應用中,通常(或理 想上)會以多輪語音與使用者作互動,這些對話語音存在一些常見的語言現象, 例如主題連貫性和單詞重複性,但這些現象與解決辦法仍然有待探索。基於上述 的種種觀察,我們首先利用上下文語言模型(例如: BERT),將 N 最佳候選重排任 務重新定義為一種預測問題。再者,為了更進一步增強我們的模型以處理對話語 音,我們探索了一系列的主題和歷史調適的技術,大致可分為三部分: (1)一種將 跨語句資訊融入到模型中的有效方法; (2)一種利用無監督式主題建模來擷取與 任務有關的全局資訊的有效方法; (3)一種利用圖神經網路(例如: GCN)來提取詞 彙之間全局結構依賴性的新穎方法。我們在國際標竿 AMI 會議語料庫進行了一 系列的實驗來評估所提出的方法。實驗結果顯示了在降低單詞錯誤率方面,與當 前一些最先進與主流的方法相比,提出方法有其有效性與可行性。
  • Item
    表徵學習法之文本可讀性
    (2020) 曾厚強; Tseng, Hou-Chiang
    none