理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    超高真空系統架設與鐵在低溫下成長於金與矽基板之研究
    (2009) 林彥穎; Lin Yen-Ying
    我們建立了一部多功能超高真空系統,其背景壓力約在3x10^-10托耳。而用電子穿隧掃描顯微鏡來觀測樣品所得到的表面形貌圖片可以藉由石墨和單晶矽基板來校正。在180K將鐵成長於金(111)表面的系統中,發現有雙生的核成長在金(111)重構表面fcc結構的紐節處,這和在90K曝氙成長的結果非常不一樣。當再一次鍍膜於180K,使膜厚度達0.45個原子層後再以室溫退火處理,發現金的奈米顆粒成長呈現隨機分布。而在金(111)的面上有些區域呈現與面(111)相鄰斜面的結構,鐵在此相鄰結構上的成長和另一個相鄰面,金(788)面,的系統完全不一樣。最後,我們同時建置了磁光柯爾效應量測裝置,其最大磁場可達4300高斯。同時我們也成功的量測到鐵薄膜在矽基板平面方向的磁滯曲線。
  • Item
    利用鐵和金輔佐含氮五員、七員、九員環化合物的生成
    (2012) 陳奕竹
    本論文共分成兩個部分: 第一部份: 金(I)離子催化8-苯基-5-N-2,3-環氧基-5-甲苯磺醯基-7-炔-1-醇得到(Z)-4-苯基-7-甲苯磺醯基-3,10-二氧-7-氮雙環[7.1.0]癸-4-烯化合物。以三氟甲磺酸與此含氮醚類九員環環氧化物反應得到7-苯基-4-甲苯磺醯基-8,10-二氧-4-氮雙環[5.2.1]-2-癸基三氟甲磺酸。當金(I)離子催化取代基為間位硝基苯或間位酯基苯時,得到(Z)-4-苯亞甲基-6-甲苯磺醯基-3,9-二氧-6-氮雙環[6.1.0]壬烷化合物。 第二部分: N-((2-羥甲基)環丙基)甲基)-4-甲基-N-(3-苯基丙-2-炔基)苯磺醯胺以鐵(III)進行環化反應得到(Z)-3-(氯(苯基)亞甲基)-4-環丙基-1-甲苯磺醯基吡咯啶。若反應物為二級醇衍生物則生成具有單一選擇性的(Z)-5-(氯(苯基)亞甲基)-6-甲基-3-苯磺醯胺-3-氮雙環[5.1.0]辛烷化合物。
  • Item
    奈米材料的尺寸在氧化乙醇蒸氣重組上的影響
    (2012) 陳興立; Chen, Shing-Li
    本論文是在研究多種金屬在氧化鋁上的複合式材料並透過氧化乙醇蒸氣重組(OSRE)的催化現象。首先OSRE已經被我們有系統的研究催化金屬Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir和Pt在氧化鋁顆粒上且比較有煮沸和無煮沸過的氧化鋁的支撐物影響。此外,為了驗證催化劑在OSRE反應中的金屬性質效應,一開始我們先合成奈米金屬Cu、Pd、Ag、Ir、Pt和Au並沉積到氧化鋁的顆粒和粉末上,最後並分析OSRE的反應現象。 在奈米合成方面,我們也探討了界面活性劑、還原劑和金屬前驅物濃度的相對關係,以及控制奈米粒子的尺寸大小和形狀。在沉積部分,奈米粒子與金屬氧化物的吸附與之間的電荷分布關係,也已經被我們有系統的利用燒結溫度、pH值、溶劑、不同種酸、離子效應和不同種金屬氧化物做測試。最後利用TEM、XRD、UV-VIS光譜去做特性鑑定與OSRE的測試。我們可以經由乙醇轉換效率、氫氣產率、產物選擇率去針對複雜的OSRE的反應機制有初步的了解。 結果也發現奈米Cu、Ag、Au可以幫助氧化反應過程。此外,這些奈米材料可以在最適當的氧氣量達到最大氧化能力。
  • Item
    金、銀催化1,3-環己雙烯苯行分子內hydroarylation環化反應
    (2009) 曾麗宇; tsung-li-yu
    利用(η5-1,3-環己雙烯) 或 (η5-1,3-環庚雙烯) 三羰鐵陽離子錯鹽,與sodium dimethylmalonate (丙二酸二甲酯鈉) 進行親核性反應,所得三羰鐵錯合物經硝酸鈰銨(CAN)氧化劑去錯合後,得到C-5位置帶有雙酯基之1,3-環己雙烯化合物與 1, 3-環庚雙烯化合物。將帶酯基之1,3-環形雙烯化合物在鹼性條件下與芳香環溴化物反應,可得C-5位置帶有雙酯基之1, 3-環形雙烯芳香環之衍生物。最後以金陽離子催化進行分子內 hydroarylation,可得到芳香環進行親核性加成的多環產物。 將帶酯基之1,3-環形雙烯化合物在鹼性條件下與3-溴丙炔反應,可得C-5位置帶有雙酯基之1,3-環形雙烯炔之化合物,以銀陽離子催化進行分子內環化反應,得到兩種不同位向選擇性的多環產物。另外,將帶酯基之1,3-環形雙烯化合物在鹼性條件下與2-溴甲基呋喃反應,可得C-5位置帶有雙酯基之1,3-環形雙烯呋喃之化合物。以銀陽離子催化會進行分子內Diels-Alder 反應,可以得到多環架橋化合物。
  • Item
    金(I)離子催化雙烯炔的分子內環化反應
    (2008) 林姿伶
    本文章主要探討利用金(I)離子催化雙烯炔的分子內環化反應。 利用(η5-1,3-環己雙烯)三羰鐵陽離子錯鹽,與親核試劑sodium dimethylmalonate 或sodium-2,4-pentadionate 親核性試劑反應,所得三羰鐵錯合物經CAN氧化去三羰鐵後,得到C-5位置帶有雙酯或雙酮官能基之1,3-環形雙己烯化合物。將帶雙酯或雙酮官能基之1,3-環形雙烯化合物在鹼性條件下與3-溴丙炔反應,可得C-5位置帶有雙酯官能基之1,3-環己雙烯炔之衍生物。利用Sonogashira反應得到不同的芳香炔雙烯化合物。 將C-5位置帶有雙酯或雙酮官能基之芳香環取代環己雙烯炔衍生物,以金陽離子催化進行分子內環化異構化反應,大多可得芳香環進行親核性加成的多環產物,為單一立體選擇性非鏡像異構物。當雙酯官能基之pyridine環己雙烯炔為起始物,所得產物為含氧之[5.2.2.04,8]架橋三環化合物,而雙酮官能基之4-甲氧苯環己雙烯炔起始物,也可得[5.4.0.04,8]之架橋三環化合物。 以鋰試劑或格里納試劑與醛基反應,得到雙烯炔醇起始物,以二氯甲烷為溶劑,利用金催化有推電子之甲苯基及甲氧苯基之雙烯炔醇化合物,形成帶有酮基之八員環產物。當改變成親核性溶劑甲醇時,得到共軛雙烯炔。
  • Item
    奈米粒子與表面嫁接聚左旋離氨酸的奈米複合薄膜的製備和鑑定並應用於表面增強拉曼散射
    (2006) 吳宜洲; Yi-Chou Wu
    銀和金奈米粒子具有增強拉曼散射的特性。而聚左旋離氨酸,是一種生物可相容的水溶性聚肽分子,將其嫁接於矽晶片基底上,使得其在水溶液中能膨脹形成類陣列式的隨機線圈結構,而其支鏈露出的帶正電的氨基,容易因庫倫靜電力使得帶負電的奈米粒子吸附於聚左旋離氨酸的氨基上,形成一種生物可相容奈米複合薄膜。此薄膜材料可作為表面增強拉曼散射的的基底,我們使用羅單寧6G分子來找出最佳表面增強拉曼散射並探討薄膜對於表面增強拉曼散射的影響。
  • Item
    金屬奈米粒子之尺寸和形狀控制及其對乙醇氧化反應的影響
    (2014) 楊皓雯
    本篇論文使用化學還原法合成了Pd、Pt、Ag、Au四種金屬的不同形狀、尺寸奈米粒子,並測試其對乙醇氧化的催化反應。藉由調整界面活性劑、還原劑及其他反應條件,來控制奈米粒子的尺寸和形狀。使用了穿燧式電子顯微鏡、X光繞射分析儀、和紫外-可見光光譜儀作特性鑑定,並沈積到支撐物氧化鋁上,作乙醇氧化的催化活性測試。 實驗結果發現,尺寸較小的Ag、Pd和方形Pd奈米粒子有較強的斷碳-碳鍵能力,能有效地使乙醇氧化成乙醛和二氧化碳;而Pt奈米粒子僅在斷碳-碳鍵的能力上有所提昇,生成較多的一氧化碳。另一方面,縮小Au奈米粒子的尺寸不僅能夠有效地提昇氧化能力,增加對乙醛的選擇率,同時也能夠減少乙烯的產生,避免形成碳沉積。
  • Item
    異相催化劑反應之理論計算研究: 乙醇重組反應與Fischer-Tropsch合成反應
    (2014) 徐慈瑛; Cih-Ying Syu
    乙醇蒸氣重組被視為一種產氫的重要反應。在本篇論文第三章中,我們利用理論計算探討貨幣金屬(Cu、Ag、Au)在進行乙醇蒸氣重組反應中的強氧化性與高乙醛選擇率的反應路徑研究。從計算的能量發現,貨幣金屬傾向選擇活化能障較低且放熱較多的部分氧化路徑。利用電子結構分析,發現d軌域被填滿的貨幣金屬能有效率地將電子傳遞至O和OH,使O和OH的p軌域提升,降低氧化反應步驟的能障。在本篇論文第四章中,我們探討Rh金屬的蒸氣重組反應機構以及氧在反應中所扮演的角色。從反應機構的計算發現,CH3CHO*和CH2CH2O*為關鍵的中間產物,中間物反應生成CO(g)、 CO2(g)的氧化步驟能障高,被視為速度決定步驟。氧扮演旁觀者所造成的adsorbate effect,可以降低速度決定步驟的活化能。在動力學上的分析也獲得與實驗上一致的結果。因此,我們合理推測:Rh-based催化劑的可藉由合適的添加物,提高載氧能力,作為乙醇重組反應催化劑時可獲得更好的效能。 本篇論文的第五章是探討Fischer-Tropsch合成反應(以下簡稱F-T合成反應),在Ru(0001)和Co(0001)表面,計算CO的活化反應、CHx(x=1~3)的氫化反應、C-C單體結合反應及C-H鍵結/解離終止反應等機構的探討,找出Ru和Co催化反應機構的差異,並添加1A金屬Na於Co表面,探討Na對吸附物的影響,進一步提出Co催化劑的改良辦法。從計算結果顯示,不論在Ru(0001)還是Co(0001)表面,CO 並不會氫化生成COH,反而傾向直接解離或是生成中間物CHxO再解離C-O鍵。CHx (x = 0~3)的選擇性,在Ru(0001)以CH 佔大多數,在Co(0001)表面則是CH和CH3。在Ru(0001)表面C-C 單體結合反應,傾向以CH2 + CH2 的方式進行。而在Co(0001)表面則可能以CH2 + CH2、CH + CH或CH+CHO的方式進行。從終止反應的探討發現,不論是CHx還是C2Hy的氫化終止反應,Co表面皆為動力學與熱力學上穩定的。最後,添加Na金屬於Co可以使含氧化物的吸附能提升,穩定CO、HCO、HCHO等吸附物,降低C-O解離的能障。另外,添加Na並不會增強CHx(x=1-3)的吸附,可以保留Co表面上C-C鍵結速率較快的優勢。綜合上述結果,合理推測:添加對氧吸附能力大於碳的金屬,或是將Co金屬吸附於擁有氧空缺的氧化物支撐物上,能有效提升Co催化劑對高碳數產物的選擇率及減少含氧化物的產生。
  • Item
    1.三氯化鐵輔佐之環化反應:多氫吲哚與雙環[2.2.2]辛-2-烯衍生物的合成 2.金(I)催化3-(3-苯基丙炔胺基)環己-2-烯-1-酮的環化反應:二氫喹啉酮衍生物的合成
    (2013) 江孟潔; Meng-Jie Jiang
    研究主要分成三個部份,第一個部份是利用三氯化鐵輔佐反式4-(3- 芳香基丙炔(對甲苯磺醯基)胺基)環己-2-烯-1-醇進行環化反應,在室溫、空 氣下進行反應得到氯化多氫吲哚衍生物。第二部分是以三氯化鐵輔佐4-(3- 芳香基丙炔基)環己-2-烯-1-醇行環化反應得到氯化雙環[2.2.2]辛烯衍生物, 此環化反應中,三氯化鐵同時當作路易士酸和氯離子的來源。第三部分利 用金(I)催化3-(3-苯基丙炔胺基)環己-2-烯-1-酮行6-endo-dig 環化反應得到 二氫喹啉酮結構。
  • Item
    計算水煤氣轉移反應在金與鉑(100)、(110)、(111)、(211)表面上的反應機構
    (2016) 曾書皇; Zeng, Shu-Huang
    水煤氣轉移反應最佳活性的催化劑金、鉑系統性的檢驗在(111)、(100)、(110)、(211)表面結構效應對於反應的影響。首先計算水煤氣轉移反應重要的中間產物(CHO、CO、CO2、COOH、H、H2O、HCOO、O、OH)在上述表面的吸附能。從結果來看我們可以發現開放(100)、(110)、(211)的階梯型表面在大部分的例子中吸附能略強於(111)表面,而且Pt表面吸附能大於Au表面。此外,我們檢驗上述表面對於水煤氣轉移反應的三種路徑(1) 羧酸化(2)氧化還原(3)甲酸化的反應熱與活化能。Pt(111)傾向走羧酸化路徑;Pt(211)、Pt(100)、Au(100)、Au(110)、Au(211)、Au(111)傾向於氧化還原路徑;甲酸化有相對較高的反應熱,反應較不易發生。所有的Au表面的活化能都低於Pt表面,顯示Au是水煤氣轉移反應較佳的催化劑。最佳路徑的速率決定步驟沒有太大差別,顯示表面的修改可能改變反應路徑,但不影響活性。 附錄 乙醇氧化反應主要分成兩種路徑: (1)乙醇斷裂碳碳鍵發生12個電子轉移的C1路徑(2)乙醇氧化成乙醛轉移兩個電子,再氧化成乙酸轉移2個電子。催化劑活性利用循環伏安法、壽命使用計時安培法、反應產物以即時性傅立葉轉換紅外線光譜儀來鑑定並推測反應機構。本實驗以電解質濃度與反應溶液體積作為變數觀察催化劑反應機構,掃描範圍為 -0.9~0.6 V,在KOH濃度在2 M時,具有催化劑最大活性與最大穩定性,體積對於催化劑的活性沒有顯著的影響。