理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
20 results
Search Results
Item 轉錄因子 SPZ1 於非小細胞肺癌中透過調控 NANOG 表現促進肺癌幹細胞形成(2024) 徐瑋廷; Hsu, Wei-TingItem 植化素Withaferin A 引發人類非小細胞肺癌鐵依賴型細胞死亡的影響(2021) 呂奕靜; LU, I-Ching鐵依賴型細胞死亡(ferroptosis)為一調節性細胞死亡形式,其導致細胞死亡的特徵為:還原活化態的鐵存在、氧化含多元不飽和脂肪酸的磷脂質及脂質過氧化修復能力缺失,被認為是對抗惡性癌細胞的新契機。肺癌是全球死亡人數最多的癌症,預後不佳且死亡率逐年攀升,除傳統治療方法外,臨床也針對EGFR突變型(mutant-type)的肺癌細胞株開發標靶藥物,但對於無突變的EGFR 原生型(wild-type)肺癌細胞效果不彰。本研究透過基因分析發現肺癌細胞內鐵相關基因FTH1表現量不僅與ferroptosis發生有關,亦影響南非醉茄之萃取物Withaferin A (WA)作用於肺癌細胞的活性。經實驗證實儲鐵蛋白FTH1表現量較低的惡性非小細胞肺癌細胞CL1-5對ferroptosis inducer敏感性高,且WA經由提高進鐵蛋白TFRC提升細胞內鐵含量、增加生成細胞lipid ROS與抑制細胞抗氧化能力,並透過自噬體包裹、降解FTH1,促使容易產生氧化還原作用的游離鐵釋出,誘導CL1-5細胞發生ferroptosis。另外,WA合併肺癌臨床化療藥物能藉由引發ferroptosis造成肺癌細胞死亡。綜合以上結果,透過天然植化素WA誘導癌細胞產生ferroptosis,以改善EGFR 原生型之非小細胞肺癌細胞對化療藥物及標靶藥物療效有限的治療困境,是對抗惡性肺癌腫瘤相當具有潛力的新策略。Item 以微矩陣比較基因體雜合方法偵測東西方肺癌族群新穎致癌基因及其機制與臨床探討(2011) 羅芳宜; Fang-Yi Lo近年研究顯示,腫瘤形成基因於不同種族之間存在差異性。因 此,鑑別各人種族群之間共通及具有差異性的基因群,是近代研究腫 瘤形成的重要課題。為了進一步探究腫瘤形成相關基因的分子機制, 本研究收集了40 對來自於臺灣肺癌病人(由台北榮民總醫院胸腔外 科許瀚水醫師提供檢體)及20 對來自於美國白種肺癌病人(由美國 芝加哥大學附設醫院胸腔外科Dr. Ravi Salgia 醫師提供檢體)的東西 方肺癌族群樣本,對其進行微矩陣比較基因體(array-comparative genomic hybridization, array-CGH) 的圖譜分析。本研究發現,於東方肺癌群族偵測到17 段染色體變異區域,涵蓋註解基因數為476;並 於西方肺癌群族偵測到20 段染色體變異區域,涵蓋註解基因數為 459。進一步針對本研究室先前分析出的expression array 基因群進行 一致性比對,篩選214 個於肺癌族群中基因結構變異及基因表現異常 趨勢相符的候選基因,並對候選基因進行基因已知功能的資料庫搜 尋。這些候選基因包含位於6p22.1 參與MAPK 路徑的 ZNF322A 基 因、位於10q24.1 參與Rho GTPase 路徑的 ARHGAP19 基因、位於 10q24.1 參與Wnt 路徑的 FRAT2 基因、以及位於17p13.3 功能與 motility 相關的 PAFAH1B1 基因。本研究對這四個極具潛力的候選 基因進行即時定量聚合酶鏈鎖反應系統、chromogenic in situ hybridization 方法、反轉錄即時定量聚合酶鏈鎖反應系統及免疫組織 染色法,確認候選候選基因於臨床肺癌樣本及肺癌細胞株中的基因變 異情形,其結果顯示候選候選基因其基因體套數及其 mRNA 表現量 皆於肺癌組織中高於正常組織 (P<0.001~P=0.06)。本研究亦利用反轉 錄即時定量聚合酶鏈鎖反應 及免疫組織染色法對101 位肺癌族群檢 測 PAFAH1B1 基因其 mRNA 及蛋白層次變異情形。結果發現 PAFAH1B1 基因於 mRNA 層次的過度表現頻率為62.4%,於蛋白層 次過度表現頻率為57.4%,且此基因於mRNA 及蛋白層次的過度表 現皆與病人的晚期具有相關性 (mRNA:P=0.008,蛋白層:P=0.008), 且屬於腺細胞癌 (P=0.020) 及男性 (P=0.049) 的病人於蛋白層次的 過度表現具有較差的預後,顯示PAFAH1B1 基因於肺癌族群具有過 度表達的變異;細胞及動物實驗顯示過度表達PAFAH1B1 且可能促 進肺癌細胞轉移能力。本研究提供了第一個東西方肺癌族群新穎基因 變異資料庫,並以細胞、動物及臨床模式探討基因變異之致癌機轉。Item 新穎抗癌藥物及其所影響之蛋白對於肺癌治療的效性探討(2010) 譚一泓; Yi-Hung Carol Tan目的:標靶治療是目前癌症治療的主要研究方向,大多數的肺癌患者對於化學療法或是放射線療法都有強烈的抗藥性,因此新穎的抗癌藥物以及新的治療目標是極需被開發研究的。在此論文的第一部分研究目的,希望鑑定新穎的小分子化合物OSU03013,是否可以作為肺癌新穎抗癌藥物。OSU03013其為舊藥celecoxib的衍生物,屬於cyclooxygenase (COX)-2的抑制劑。在攝護腺癌研究中證實OSU03013透過3-phosphoinositide- dependent kinase 1 (PDK1)/AKT訊息傳導路徑抑制腫瘤生長,此外,OSU03013也使用在乳癌的研究中。因此我們也希望能定義出OSU03013在肺癌中的目標蛋白及影響的生物路徑。此論文的第二部份是探討新穎c-Met抑制劑PHA665752對肺癌細胞生長及轉移的抑制作用,以及新穎治療目標基因Cbl (Casitas B-lineage lymphoma) 於肺癌病人檢體之突變情形。c-Cbl基因位於人類染色體11q23.3的位置,c-CBL蛋白目前已被發現主要參與細胞訊息傳導路徑以及酪氨酸激酶接受器(如:c-Met 和EGFR)的負調控角色,因此,本研究推測c-Cbl的突變或許是造成c-Met和EGFR過度表現的原因之一。此外,結合PHA665752 以及c-CBL 正常蛋白的共同抑制作用,或許可以成為新穎治療肺癌的策略。 實驗方法與設計:論文的第一部分,為了探討OSU03013是否有潛力成為新穎抗癌藥物,本研究利用肺癌細胞之毒殺作用及其細胞學鑑定,之後利用二維電泳、質譜分析等蛋白質體學的方法找尋藥物的目標及影響蛋白,並分析這些蛋白/訊息傳遞路徑與細胞生長調控的關係。論文的第二部分,利用肺癌細胞之毒殺作用來探討PHA665752的抑制效果,並利用基因定序及生物功能探討的方式,在總共一百一十九位來自台灣、美國白種人及黑人肺癌病人腫瘤組織中來研究c-Cbl的基因突變圖譜,並且在非小細胞肺癌細胞株中探討c-Cbl基因突變後影響細胞生長的狀況。此外,並利用c-Met抑制劑PHA665752及c-Cbl 正常基因轉染的共同處理,在細胞及動物實驗中來探討c-Met抑制劑及c-CBL正常蛋白對癌細胞的抑制作用。 結果:第一部分的結果指出OSU03013具有高度細胞選擇性毒殺作用,而此藥物對於肺正常細胞在相同濃度處理並沒有毒殺作用,所以是一個治療肺癌的潛力藥物。在細胞學鑑定實驗中,我們發現OSU03013的細胞致死劑量在48小時的測試下約1~4 M,會造成細胞週期停滯在間期一 (Gap 1, G1 arrest) 的現象;OSU03013在肺癌細胞同時也藉由內質網壓力效應去引發細胞凋亡 (apoptosis)。在蛋白質體學的實驗中,我們發現此藥物在肺癌細胞之目標蛋白包含了cAMP-dependent protein kinase inhibitor β form (PKIB, 激酶抑制蛋白)、數種G proteins (G蛋白)、數種Heat-shock proteins (熱休克蛋白)、Antioxidant enzymes (抗氧化蛋白)、及其他調控細胞生長、代謝的蛋白;這些蛋白有許多皆以Western blot (西方點墨法) 確認。經由分子模擬的實驗顯示,OSU03013會與ATP競爭然後與cAMP-dependent protein kinase (PKA)結合,並且抑制PKA的訊息傳導路徑,推測因此抑制了肺癌細胞生長。第二部份的結果指出,c-Met普遍過度表現於肺癌細胞中,而PHA665752對癌細胞具有毒殺作用、降低c-Met的表現,並且會引發早期細胞凋亡的機制。此外,一百一十九個肺癌病人樣本中,有一個已知的基因多型性變異 (signal nucleotide polymorphism) L620F以及八個位於表現子(exon)的c-Cbl突變型,其突變機率為百分之六點七。在三十七個台灣肺癌病人樣本中,有百分之二十一點六失去異合性(Loss of heterozygosity)的情形發生;另一方面,S80N/H94Y、Q249E、W802stop突變分別專一性發現於美國白種人、台灣人、非裔美人。在A549細胞中轉染此三種突變型c-CBL蛋白會導致細胞生長率以及移動能力的增加。最後,無論是在細胞或動物實驗中,將PHA665752以及c-CBL正常蛋白單獨或共同處理癌細胞有抑制其生長的現象,亦有抑制細胞轉移的情形。 結論:本研究為首篇在肺癌細胞中偵測OSU03013藥物之抑制癌細胞潛力,並由分子及蛋白質體學的研究結果發現此藥物會經由抑制PKA訊息傳導路徑來抑制癌細胞生長,並導致GSK3的去磷酸化,進而使在肺癌細胞中通常過度表現的-catenin被分解。此外,基於c-CBL可以負調控酪氨酸激酶接受器的表現,加上PHA665752亦可抑制c-Met在細胞中的過度表現,或許將來可以發展c-Cbl之基因治療,並且配合PHA665752的共同治療成為新的癌症治療方向。Item 基因體甲基化圖譜與抑癌基因甲基化參與肺癌形成之機制及臨床應用探討(2009) 張哲維; Chang, Jer-Wei癌症一般認為與基因體與外顯基因體發生變異有關,而在外顯基因體研究中,基因啟動子過度甲基化是最主要造成基因不活化的原因之一。抑癌基因的啟動子過度甲基化,會造成抑癌基因不活化,進而導致癌症的發生。為了鑑定在癌症基因體中,過度甲基化的區域所包含的可能新穎抑癌基因,本研究利用差異甲基化雜交法(differential methylation hybridization)的微陣列分析及染色質免疫沈澱晶片分析法(chromatin immunoprecipitation -on -chip),針對30位非小細胞肺癌病人及數個肺癌細胞株進行基因體的過度甲基化區域及染色質鬆緊狀態研究。結果發現在不同的肺癌子類型及肺癌分期,有特定的基因被過度甲基化,這些過度甲基化基因也許可以作為早期偵測及預測癌症發展的生物指標。 此外,在肺癌病人的差異甲基化雜交法的結果中,本研究發現一個與抗細胞增生、細胞靜止與細胞分化的COL14A1基因啟動子有過度甲基化的情形,而且在染色質免疫沈澱晶片分析法中,COL14A1啟動子的染色質區域相較於正常肺細胞,肺癌細胞呈現較為緊密的狀態。此外,本研究發現有60.4%的非小細胞肺癌病人有COL14A1基因啟動子過度甲基化的情形,而且其mRNA及蛋白質分別有50.0%及43.9%的低表達情形;另外本研究也發現COL14A1基因啟動子過度甲基化與晚期肺癌病人有統計相關。這些驗證實驗顯示外顯基因體研究是尋找癌症相關基因的有效工具,COL14A1基因及其蛋白變異參與肺癌的分子機制將進一步由細胞及動物模式研究來鑑定。 在本實驗室先前對基因體缺失的研究中,發現在染色體3p21的區域有高達50%以上的基因座缺失情形。此外,在差異甲基化雜交法的結果中,也發現位於染色體3p21.3的RASSF1基因在肺癌早期的病人中有過度甲基化情形,因此染色體3p21.3區域的基因不活化對於台灣地區肺癌形成扮演一個非常重要的角色。而RASSF1A及BLU這二個頭尾相連的抑癌基因位於染色體3p21.3的區域,由於這二個基因位置非常靠近,因此本研究預測這二個基因的表達及啟動子過度甲基化具有區域效應,也就是此二基因的表達及基因甲基化具有一致性。如果沒有區域效應,可能是因為RASSF1A及BLU基因之間具有絕緣子(insulator)構造所導致。首先,本研究針對32位肺癌病人,利用特定序列甲基化微陣列分析法(methylation- specific oligonucleotide microarray)及反轉錄聚合連鎖反應,找出會影響RASSF1A及BLU基因mRNA表達的關鍵轉錄CpG位置。同時也發現在RASSF1A基因的關鍵轉錄CpG位置上,有E2F1這個轉錄因子的結合,當這些位置被過度甲基化時,會使E2F1無法結合在RASSF1A的啟動子上,導致RASSF1A基因表達下降。此外,本研究發現RASSF1A及BLU這二個基因各自的關鍵轉錄 CpG位置的甲基化與各自基因的低轉錄與低轉譯有關;然而,這二個基因的甲基化狀態及基因表達卻沒有一致性,也就是沒有區域效應。利用免疫沈澱聚合連鎖反應(chromatin immunoprecipitation-PCR)證明CTCF蛋白結合在RASSF1A及BLU基因啟動子之間的絕緣子上,也利用亞硫酸鹽定序(bisulfite sequencing)發現在絕緣子兩端的甲基化不連續情形。所以CTCF也許提供了屏障效應導致這二個基因沒有所謂的區域效應。本研究找出了RASSF1A及BLU的關鍵轉錄CpG位置,這些位置的甲基化會影響基因的表達;同時也證明了CTCF結合在RASSF1A及BLU之間,使得這二個基因的表達沒有區域效應。本研究為首篇鑑定影響RASSF1A及BLU基因mRNA表達的關鍵轉錄CpG位置的報導,並提出絕緣子可以做為如染色體3p21基因群座(gene cluster)屏障效應的證據。Item 以肺癌細胞株與動物模式探討新穎的吲哚結構合成化合物1,1,3-tri(3-indolyl)cyclohexane抑制腫瘤細胞生長機制(2008) 李慶孝; Ching-Hsiao Lee目的:肺癌在世界各地無論男性或女性都是發病率、死亡率名列前茅的惡性腫瘤。因此,發現與合成新穎的肺癌治療抗癌藥物是刻不容緩的工作。材料與方法:本研究發展了一種新穎的吲哚結構合成化合物1,1,3-tri(3-indolyl)cyclohexane (3-indole),設計使用二步法合成,該技術方法縮短製備過程,產品質量和產量也獲得提高,並藉由人類肺癌細胞株 (A549, H1299, H1435, CL1-1, and H1437) 來探討新穎抗癌藥物對於肺癌細胞的毒殺作用及其機制,同時進行前臨床動物實驗測試。結果:新穎的抗癌藥物3-indole經由不同濃度處理,可以誘導人類肺癌細胞株 (A549, H1299, H1435, CL1-1, and H1437) 進行細胞週期休止 (cell cycle arrest) 及細胞凋亡 (apoptosis)。細胞週期研究初步實驗結果顯示調控細胞週期休止的蛋白p53與p21表現增加,顯示p53/p21相關訊息傳遞路徑重要性。目前已知有兩個機轉可以調控細胞凋亡現象,第一個作用機轉是經由caspases (cysteine-dependent aspartate-specific proteases) 相關性機轉活化而引起細胞凋亡,目前已被認定有粒線體參與訊息傳遞的內在路徑與細胞外死亡訊息接受器作用的外在路徑;第二個機轉是經由caspases非相關性機轉。西方墨點法實驗結果顯示,調控細胞凋亡進行的促進凋亡蛋白Bax、Bad表現增加,抗凋亡蛋白Bcl-2表現下降,而粒線體細胞色素C釋放至細胞質情形也有增加,另外一方面,透過caspases活性分析實驗結果顯示,3-indole主要是藉由caspases-9、caspases-3參與粒線體訊息傳遞的內在路徑以誘發細胞凋亡發生。此外,3-indole誘導A549人類肺癌細胞株粒線體膜電位下降、活性氧分子 (reactive oxygen species, ROSs) 產量增加,與細胞生長調節相關MAPK (Mitogen-activated protein kinase) 家族分子c-Jun N端蛋白質激酶 (JNK) 表現增加,同時顯示有DNA損傷情形。進一步活性氧分子抑制劑實驗結果顯示,JNK表現與DNA損傷可部分減少。3-indole誘導細胞凋亡情形受到活性氧分子抑制劑或JNK訊息抑制劑阻斷,顯示活性氧分子與JNK壓力相關訊息傳遞路徑重要性。此外,初步實驗結果,其他生長調節相關訊息傳遞蛋白 (如Akt與p38/COX-2) 表現也受到3-indole抑制,顯示PI3K/Akt與p38/COX-2訊息傳遞路徑重要性。同時前臨床動物實驗測試結果顯示3-indole抑制A549及H1435肺癌細胞株生長。結論:3-indole在細胞模式與動物模式呈現具有抑制肺癌細胞株生長的作用,其誘導細胞死亡是透過ROS與JNK路徑之粒線體訊息傳遞的內在細胞凋亡,同時可誘導細胞週期休止以及抑制肺癌細胞株Akt與p38/COX-2的表現,顯示使用二步法合成,具有高質量和產量的3-indole具有發展作為新穎的抗癌症用藥的價值。Item 1. 探討夏枯草抑制非小細胞肺癌細胞轉移機制 2.篩選以細胞自噬去除神經細胞堆積多麩胺酸的小分子新穎化合物(2012) 黃中岳; CHUNG-YUEH HUANG1. 癌症是由於體細胞複製脫離正常的調控而不斷快速複製異常細胞的現象。異常增生的細胞形成腫瘤侵入週邊組織持續擴大並影響原發部位的器官功能及壓迫周遭器官;而癌細胞進入人體的血液循環以及淋巴系統轉移至其它部位增生,更是具有威脅性。 癌細胞的轉移,與分解細胞外基質(extracellular matrix, ECM),以及促進血管新生的能力有很大的關聯。而在這些過程中,基質金屬蛋白酶(matrix metalloproteinase, MMP)扮演了一個十分重要的角色。 本研究利用中草藥處理人類肺腺癌細胞株(A549、H460及H1299)以及以化學合成藥物處理p53 mutation 之肝癌細胞株(Huh7)。實驗首先利用gelatin zymography assay篩選出具有抑制MMP-9與MMP-2活性能力之藥物,並以western blot觀察細胞懸浮液MMP-9與MMP-2的表現量。接著觀察藥物是否對細胞有毒性,再以wound healing assay觀察癌細胞移動能力的影響;最後以invasion assay觀察中藥對腫瘤細胞的侵入能力的影響。綜合以上的實驗結果看出,夏枯草能夠對肺癌細胞的MMP-9與MMP-2活性產生抑制效果,而且可以抑制肺癌細胞的入侵以及移動能力,在H460細胞株上的效果較為顯著,且藥效不會因p53的狀態而受到影響。另外本次實驗並沒有在所試驗的化學合成藥物中觀察到具抑制MMP活性的合成藥物。 2. 細胞自噬(autophagy)是細胞一個重要的維持細胞生存的方式。細胞透過這個過程,清除細胞中非必要的物質,以取得胺基酸等營養物質,也避免細胞異常的物質累積。自噬過程中,細胞會將目標物質包覆在雙層膜節構中形成自噬體(autophagosome),再與溶酶體(lysosome)融合,降解目標物質,並且回收營養物質和能源。 Polyglutamine (polyQ) disease是一種在神經性退化症,其主要的病因是在基因中出現CAG或CUG的重複序列的異常增加。目前已經證明藉由調控自噬作用的藥物在polyQ disease,如亨丁頓氏症 (Huntington’s disease)小鼠模型可以減輕其毒性,因此增強自噬作用的藥物,可能會是對這種疾病的治療方式。 本論文轉殖了結合不同長度polyQ的綠色螢光蛋白基因之SK細胞株,將穩定的細胞株用各種合成化學物質複合物進行處理之後,使用螢光染色,觀察自噬體是否增加且觀察對細胞存活的影響。本論文初步篩選出了三種能夠誘導細胞自噬增加並減少polyQ堆積的小分子化合物。未來研究會再繼續確認細胞自噬對清除細胞polyQ堆積的機制。Item 香菸致癌物透過AKT/GSK3β/βTrCP訊息路徑影響DNA甲基轉移酵素穩定性(2008) 謝翊萱; Yi-Shuan Hsieh研究背景:台灣地區不論女性或男性肺癌皆高居癌症死亡率之首位,而肺癌的發生與長期暴露於環境中的致癌物質有關,尤其是香菸中的成份nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,簡稱NNK,被認為是造成肺癌主要的致癌物類型之一。NNK除了會導致DNA 的損害 (DNA damage) 外,近來研究也發現NNK 容易造成癌症形成過程中外顯基因變異 (epigenetic alteration),使抑癌基因的啟動子上被過度甲基化。而造成啟動子CpG 位置上過度甲基化的DNA 甲基轉移酵素 (DNA methyltransferase, DNMT)DNMT1、DNMT 3a 及DNMT 3b,目前也已發現在癌細胞中有過度表現的情形。 研究目的: 本實驗室先前針對肺癌做了許多與抑癌基因CpG 過度甲基化相關的研究,並發現DNMTs 的過度表達與抽煙的肺癌病人有顯著的相關性,然而造成此現象的詳細機制仍不清楚。因此本篇研究目的為以細胞、臨床及動物模式探討香菸致癌物NNK 是透過何種機制而誘導DNMTs 表達,進而導致許多抑癌基因啟動子CpG位置過度甲基化的現象。 研究方法及結果: 首先在細胞模式由西方轉漬法 (Western Blot)發現處理香菸中的尼古丁 (nicotine) 6 小時後,會促使DNMT1 蛋白表現增加;而由nicotine 所衍生出來的致癌物NNK 則是在隨其處理濃度及時間增加,DNMT1 蛋白表現也隨之增加,尤其在10 μM NNK處理2 小時即有很明顯誘導效果;同時藉由外送DNMT1 載體表現分析實驗也得知NNK 會誘導外生性DNMT1 蛋白表現增加;然而透過反轉錄聚合酵素鏈反應 (RT-PCR) 得知NNK 處理2 小時並不會影響DNMT1 mRNA 的表達改變。進一步,處理可以抑制新蛋白質生成的轉譯抑制劑Cycloheximide 得知DNMT1 蛋白的半衰期大約6小時,但是同時受到NNK 刺激後,DNMT1 蛋白的半衰期增長為24 小時。本研究結果亦顯示nicotine 及NNK 在2 小時內與p-NFκB、p-AKT、p-ERK1/2 及p-p38 的訊息蛋白活化有關;更進一步由處理AKT抑制劑 (LY294002) 及AKT knock down 實驗得知NNK會透過AKT 訊息路徑影響DNMT1 蛋白表現的增加。由免疫沈澱法(Immunoprecipitation)、蛋白質降解抑制劑 (MG132) 處理等實驗證明NNK透過AKT訊息路徑影響泛素 (ubiquitin) 調節的蛋白質體降解系統而增加DNMT1 蛋白的穩定性;此外,更進一步利用GSK3β抑制劑及分別外送GSK3β、βTrCP 載體表現來驗證GSK3β/βTrCP路徑會促使DNMT1 蛋白降解,但NNK 則會活化AKT 而影響 GSK3β/βTrCP 路徑使DNMT1 不易被降解。由免疫沈澱法也首度證實DNMT1 蛋白會與GSK3β 及 βTrCP 蛋白結合,由此可知GSK3β/βTrCP 蛋白降解路徑的確會影響DNMT1 蛋白調控。接下來我們以染色質沈澱的聚合酶鏈鎖反應(chromatinimmunoprecipitation-polymerase chain reaction assay) 及聚合酵素鏈反應為基礎的甲基化分析 (methylation-specific PCR) 方法發現NNK 所誘導的DNMTs 表現會結合至抑癌基因啟動子區域,進而造成抑癌基因啟動子有過度甲基化的情形。 在動物模式實驗中,以免疫組織染色分析NNK 處理及未處理的老鼠肺組織切片,發現NNK 處理後所產生肺腫瘤組織的DNMT1、DNMT3B、p-AKT 與不活化態的p-GSK3β(ser9)蛋白表現比較高,而βTrCP 蛋白則有下降表現的情形。 在臨床研究方面,我們以免疫組織染色分析(Immunohistochemistry)偵測109 位臨床肺癌病人DNA 甲基轉移酵素表現量,發現曾經吸煙但後來有戒煙病人的DNMT1 蛋白過度表現情形 (31.1%) 比持續吸煙病人的DNMT1 蛋白過度表現情形 (69.4%) 明顯來的低 (P 值=0.001)。 結論: 由以上細胞、臨床及動物模式實驗結果顯示,香菸中致癌物NNK 的確會誘導DNMTs 蛋白表現的增加;進一步由細胞實驗結果也知NNK 會透過AKT 訊息路徑削弱GSK3β/βTrCP 調控DNMT1 蛋白降解作用,進而使DNMT1 蛋白質穩定性增加;而這些NNK 所誘導的DNMTs 蛋白也會結合到抑癌基因的啟動子位置上,進而導致抑癌基因啟動子產生過度甲基化的情形,因此成為導致肺癌發生的原因之一。Item GAS7基因於肺癌之分子變異及臨床相關性研究(2008) 陸一麟; LU, YI-LIN自1982年起,癌症即為台灣地區十大死亡原因之第一位,其中肺癌不論在女性或男性都高居癌症死亡率的首位,儘管目前醫學已相當進步,但對於分子致癌機制仍未完全釐清。目前所知,癌症形成的原因,是由於多重基因發生變異所造成,其中大家所熟知和癌症有關的為抑癌基因 (tumor suppressor gene) 及致癌基因 (oncogene)。因此,抑癌基因變異的研究有助於了解癌症形成的機制。 研究目的:Growth arrest-specific 7 (GAS7) 這個蛋白質為GAS這個基因家族的其中一個成員,主要功能可能與調控細胞週期有關;前人研究報導顯示,GAS7可能在細胞中扮演一抑癌基因的角色。因此,本研究目的在探討GAS7基因在台灣地區非小細胞肺癌 (non-small cell lung cancer) 病人細胞中之變異情形:利用免疫組織化學染色法,觀察病人組織切片中GAS7蛋白表現情形,再以反轉錄—聚合酵素鏈反應分析組織細胞中mRNA轉錄是否異常,續以甲基化為基礎的定序反應以及微衛星基因座鑑定法分別偵測GAS7基因的促進子過度甲基化頻率和基因座缺失頻率。 結果: 本研究以免疫組織化學染色法發現75位NSCLC病人中GAS7蛋白低表達頻率為57.3% (43/75),以31位病人之組織進行西方轉漬法發現三種主要的蛋白形式,分別依分子量大至小為GAS7C、7B和7A,其GAS7C蛋白低表現之比例為48.4% (15/31),GAS7B蛋白低表現之比例為40.7% (11/27),而GAS7A蛋白幾乎不表現;GAS7 mRNA isoform: GAS7C和GAS7B低表達頻率分別為20.9% (19/91)和32.6% (30/92),而GAS7C和7B啟動子甲基化頻率分別為16.7% (6/36) 和65.6% (21/32)。GAS7基因座缺失的頻率在位於基因上、下游兩微衛星序列取聯集後為20.7% (18/87)。GAS7蛋白質/mRNA、GAS7C和7B之mRNA/啟動子甲基化的數據彼此間都呈現統計上的顯著相關性 (P<0.05)。利用西方轉漬膠片中相對於GAS7C分子量之蛋白進行膠體內水解、trypsin反應及質譜分析,本研究證實其為GAS7C蛋白。同時,我們藉由不同肺細胞株一系列的基因及蛋白質實驗,我們發現GAS7蛋白不同isoforms如GAS7C和7B,表達的量與細胞內的位置也都不同。 結論:本研究證實GAS7基因在台灣地區肺癌形成過程中扮演一個類似抑癌基因的角色,其中GAS7C為主要的變異蛋白,其變異主要機制為啟動子過度甲基化及基因座缺失,而 GAS7C 蛋白則可以在生長較為緩慢之正常肺細胞表現,此研究也是首篇證實GAS7C isoform可以在人類細胞中表現之論文。Item 組蛋白去乙醯酶抑制劑抑制肺癌細胞生長之機制探討(2007) 溫偉伶; Wei-Ling Wen目的:前人研究顯示,在一些固體或血液腫瘤中,組蛋白去乙醯酶 (Histone deacetylases, HDACs) 常不正常活化;故引發出在癌症的治療中將 HDAC 作為癌症治療標靶的想法。本研究即探討新穎HDAC抑制劑:HDAC-44 與 HTPB 是否可以有效的抑制肺癌細胞的生長,以及其抑制癌細胞生長的分子機制。材料與方法:利用 trypan blue exclusion 的方法檢測 HDAC-44 與 HTPB 單獨處理下,對正常細胞或肺癌細胞的細胞毒殺性;或是將 HDAC-44 與 cisplatin 共同處理肺癌細胞株,檢測其對肺癌細胞株是否有加成性的細胞毒殺性;使用流式細胞儀 (flow cytometry) 檢測 HDAC 抑制劑是否會影響細胞週期的分佈;利用 DNA 片斷化分析 (DNA ladder assay) 確認 HDAC 抑制劑是否誘導細胞凋亡 (cell apoptosis);以細胞免疫染色的方式 (immunocytochemical analysis) 分析 HDAC 抑制劑使否會改變細胞骨架的結構;且利用反轉錄聚合酶鏈鎖反應 (RT-PCR) 與西方點墨法 (Western blot analysis) 分析 HDAC 抑制劑是否會影響肺癌細胞株各種目標基因其mRNA與蛋白質表達,或是影響蛋白質的乙醯化程度;接著,利用細胞質免疫沉澱 (Chromatin immunoprecipitation, ChIP)、細胞質免疫沉澱晶片分析(ChIP-on-chip),大規模尋找 HDAC 抑制劑直接影響的新穎目標基因。結果:新穎的 HDAC 抑制劑可以有效的促使組織蛋白 H3 與 H4 與非組織蛋白 p53 的蛋白質乙醯化;此外其也可以有效誘導 p21WAF1/Cip1 與 Tissue inhibitor of metalloproteinase-3 (TIMP-3) 等基因的轉錄活化。新穎的 HDAC 抑制劑,HDAC-44 與 HTPB,可以有效的促使肺癌細胞株死亡 (HDAC 44對H1299的IC50為1.09 μM、HDAC 44對A549的IC50為0.64 μM、HDAC 44對CL1-1的IC50為0.67 μM、HTPB對H1299的IC50為2.99 μM、HTPB對A549的IC50為1.60 μM、HTPB對CL1-1的IC50為2.78 μM、SAHA對H1299的IC50為4.59 μM、SAHA對A549的IC50為1.89 μM、SAHA對CL1-1的IC50為2.86 μM),但是對正常細胞株則沒有明顯的細胞毒殺性。將低劑量 HDAC-44 與 cisplatin 共同處理肺癌細胞株,發現對肺癌細胞有加成性的毒殺效果。HDAC-44 與 HTPB 可導致肺癌細胞株的細胞週期停在 G2/M 期並且導致細胞凋亡的現象,如:DNA ladder 與抗細胞凋亡的 Bcl2 蛋白質表達量下降。將肺癌細胞處理 HDAC-44 後,會導致細胞骨架蛋白 a-tubulin 的不正常分佈並且抑制癌細胞的細胞質分裂。ChIP-on-chip分析的結果顯示,HDAC抑制劑可以專一性的在三種測試癌細胞將一些 CpG island 乙醯化,這些 CpG island 所屬之基因可做為未來 HDAC 抑制劑的抗癌機制之目標基因群。結論: HDAC-44 與 HTPB 極具有潛力成為新穎的抗肺癌藥物,而HDAC抑制劑對其他種類的癌症影響也很值得做進一步的研究。