理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    脈衝雷射蒸鍍法沉積氧化釓鋅薄膜的磁光與導電特性
    (2024) 張芷郁; Chang, Chih-Yu
    本論文使用脈衝雷射蒸鍍法在c指向的藍寶石基板上沉積摻雜的氧化釓鋅薄膜,所有薄膜樣品的沉積條件皆為525 ℃與3×10^(-1) mbar的氧氣環境。X光繞射光譜中,只顯示氧化鋅和基板的特徵峰,沒有其他晶相,由此可知釓原子成功的摻雜進氧化鋅晶格中。隨著釓元素摻雜比例增加,薄膜的c軸晶格常數從無摻雜的5.20 Å下降到5.16 Å。光致螢光光譜的強度因為摻雜導致結晶品質變差而降低,所有樣品的光譜皆有近能隙發光譜線。在摻雜的樣品中,螢光光譜則可以看到鋅空缺、鋅間隙、氧間隙與中性和帶二價的氧空缺的發光峰。磁性相關的量測有室溫磁特性曲線與磁光法拉第效應。磁性檢測顯示,所有氧化釓鋅薄膜在平行磁場與垂直磁場方向皆為順磁性,並且在外加磁場約為1500 Oe時達到飽和。每一片樣品在兩個方向下的飽和磁化量幾乎相同,其量值介於0.80 emu/cm^3 〜2.84 emu/cm^3。磁光法拉第效應顯示,所有氧化釓鋅薄膜的皆在略大於氧化鋅能隙(368 nm)的近紫外光波段有較大的磁光法拉第響應,因此我們推測磁光響應在對應材料能隙的波段直接相關,Verdet constant的最大值介於56.28 rad/(T‧cm)〜362.05 rad/(T‧cm)。導電特性方面,電流-電壓特性曲線顯示所有樣品的電極與薄膜皆為歐姆接觸。利用范德堡量測法得到的氧化釓鋅薄膜電阻率介於11〜309.74 mΩ⋅cm,因為摻雜造成晶粒尺寸變小、晶粒邊界增多、缺陷類型與密度增加,導致電阻率變大。由霍爾效應得知所有氧化釓鋅薄膜皆為n型半導體。因為摻雜釓離子引入的電子,使載子濃度大幅提升,但摻雜超過1%時,氧化釓鋅薄膜的晶格缺陷變成載子陷阱,因此載子濃度隨釓摻雜濃度而下降,並在摻雜10%的釓時維持在略高於純氧化鋅的值,其值介於5.17 〜32.02×10^18 cm^(-3)。載子遷移率也從純氧化鋅的22.77 cm^2/V⋅s 大幅下降至4〜8 cm^2/V⋅s。
  • Item
    脈衝雷射蒸鍍法製備氧化銪鋅薄膜之探討: 結構、光學、電性與磁性研究
    (2023) 魏煒倫; Wei, Wei-Lon
    本論文利用脈衝雷射沉積法在c方向的單晶藍寶石基板上沉積氧化銪鋅(Eu:ZnO)薄膜,摻雜比例為0-4.0 at.%,薄膜厚度控制在150 nm,之後檢測薄膜樣品的結構、光學、電性以及磁性。X光繞射光譜中在角度2θ = 31°-45°,我們只觀測到ZnO以及基板的特徵峰,確認了Eu成功摻雜進ZnO且沒有雜晶相。c軸常數隨摻雜比例提升從在5.21 Å降至5.18 Å,推測與電荷補償機制有關(2Eu3+ → 3Zn2+ + VZn);晶粒尺寸與摻雜比例沒有明顯趨勢,晶粒尺寸在163-183 Å。光致螢光光譜的結果顯示Eu摻雜使得整體螢光強度下降、近能隙3.3 eV峰值訊號變寬,經分析後可推斷Eu:ZnO薄膜具有鋅間隙、鋅空缺、氧空缺、氧間隙等等的缺陷,隨著摻雜比例上升,缺陷和Eu 4f-4f軌域躍遷5D0-7F2逐漸主導螢光,當摻雜比例達到4.0 %時,可以觀察到5D0-7F1、5D0-7F0的螢光。在電性分析中,薄膜載子遷移率隨著摻雜比例上升從23 cm2/Vs降至0.1-1.0 cm2/Vs,推測與摻雜所產生的缺陷有關,缺陷變得更多、應力變大,形成更多的晶粒邊界使得電子容易被散射。在0、0.5、1.0 %摻雜比例的薄膜樣品,電阻率約在0.1 Ω⋅cm,載子濃度在1.0 %的薄膜樣品達到最大值32×10^18 cm-3,意味著少量摻雜可以改變、甚至促進薄膜電性,而當摻雜比例超過2.0 %時,電阻率急遽上升至1-10 Ω⋅cm、載子濃度則在3-5×10^18 cm-3。我們從磁光法拉第光譜觀察到薄膜樣品的法拉第旋轉角與外加磁場呈線性關係,並且薄膜的法拉第旋轉強度在近能隙的波長(340、350 nm)會有較強的響應,並且有Eu摻雜的樣品比無摻雜樣品具有更強的旋轉角強度,歸因於Eu摻雜帶來額外電子,達到增幅磁光效應的效果。磁性分析中,所有薄膜樣品在室溫下呈現順磁性,樣品磁矩在外加磁場達到1500 Oe後皆達到飽和。飽和磁化強度隨著摻雜比例上升有趨近飽和的趨勢,從7 emu/cm-3增加到13.7 emu/cm-3。
  • Item
    利用摻雜錳於二維層狀鈣鈦礦提升激子磁光效應
    (2021) 陳冠庭; Chen, Guan-Ting
    有機-無機鈣鈦礦因為其良好的光電特性,使得鈣鈦礦材料在各個光電領域上均有突出的表現,除了最受矚目的太陽能電池的能源轉換效率從3.8%提升至25.2%,以及常見的發光二極體、光感應器、雷射等應用外,近年來,鈣鈦礦也逐漸踏入了磁光領域中,利用其良好的吸收係數與較大的原子序和半徑的鉛離子所引起的自旋軌道耦合產生的能階分裂,使鈣鈦礦在磁場下,對於左右旋偏振光有不同的吸收度與折射率,進而產生磁光效應。本篇將摻雜錳離子於材料內以增強磁光效應。成功將合成出二維鈣鈦礦晶體BA2PbI4 (n=1)與BA2MAPb2I7 (n=2¬),以摻雜錳離子的方式製作成Mn-doped BA2PbI4 (n=1)與Mn-doped BA2MAPb2I7 (n=2¬),利用粉末X光繞射鑑定結構與測量吸收光譜確定能隙發現結構與能隙皆與無摻雜晶體相同,特別的是在放射光譜中,因為磁場的影響,增強了雷射激發後所產生的放射光,而無摻雜錳離子之晶體則沒有這個現象發生。最後透過測量磁性圓二色性,確實在Mn-doped BA2PbI4製作成的元件中,訊號會受到錳離子產生的內部磁場影響,有部分增強,也有部分減弱,但在零磁場的情況下,可以明顯看出訊號增強將近六倍,最後也利用外加電場達到控制磁性圓二色性訊號,進而增加材料的應用性。未來將有機會合成出更高層數的鈣鈦礦,實現涵蓋可見光區域之錳摻雜二維鈣鈦礦,使材料在光學應用上更加廣泛。
  • Item
    利用柯爾磁光效應與磁電阻研究電鍍Co/Cu多層膜
    (2013) 魏佳瑜; Chia-Yu Wei
    以電鍍法製備Co/Cu多層膜,並分成四個部分討論基板、初始電鍍電位、緩衝液硼酸以及電鍍時間對Co/Cu多層膜磁性質的影響。主要藉由原子力顯微鏡(AFM)觀察其表面形貌以及粗糙度,柯爾磁光效應(MOKE)所得到的磁滯曲線判斷在外加磁場下磁矩的翻轉情形,以及利用磁阻(MR)變化率和圖形分析影響磁阻的機制並推測其多層膜內部的組成形式。最後一部分由XRD數據分析電鍍Co/Cu多層膜是否具有結構。 本實驗以定電位模式(銅:-0.4V,鈷:-0.9V),硫酸系電鍍液沉積Co/Cu多層膜。 第一部分:討論基板(ITO/Cu和Si/Cu)以及第一層電鍍層(Co層和Cu層)對磁性質的影響。基板為ITO/Cu的導電層較厚且表面粗糙度比Si/Cu大,使其鍍率較高、MR變化率較低。而第一層電鍍層為Co層的樣品不論層數增加多少,均不影響其磁性質;第一層電鍍層為Cu的樣品隨著層數增加,粗糙度和矯頑場上升,但粗糙度增加至6nm後呈現穩定震盪的趨勢且矯頑場大幅下降,而MR變化主要來自巨磁阻(GMR)效應,隨多層膜層數增加而上升。 第二部分:電鍍液加入硼酸後,樣品表面顆粒明顯變小,對外加磁場的靈敏度增加,飽和磁場與矯頑場大幅下降,MR變化主要由GMRSPM效應貢獻。 第三部分:增加第一層電鍍Cu層的時間,大量消耗電極附近的Cu離子濃度,造成層狀結構不明顯,Cu層不連續,Co偏向以塊材形式生長,矯頑場與MR變化率不隨層數變化。 第四部分:從XRD數據討論電鍍Co單層與Co/Cu多層膜是否具有結構。Co(100)和Cu(100)的訊號峰幾乎重疊造成判斷不易,但可從MOKE量測發現微弱的四重對稱性。若Co層厚度增加,Co傾向排列成hcp的結構。 關鍵字:電鍍、磁阻、磁光效應、多層膜