理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    濺鍍成長鐵鈷合金薄膜與大學近代物理實驗改進研究
    (2010) 林仟弘; Chang-Hong Lin
    本研究是利用射頻濺鍍的方式,在單晶矽(100)上成長鈷和鐵鈷合金薄膜,並配合大氣磁光柯爾效應儀進行磁性的量測,且配合原子力顯微鏡、掃描穿隧式電子顯微鏡,進行表面形貌量測,觀察濺鍍不同鐵磁性薄膜一系列的研究。 我們建立一套全新的射頻濺鍍系統,且成功利用此系統濺鍍Co/Si(100)及CoxFe1-x/Si(100)薄膜。實驗發現,改變濺鍍條件成長薄膜,濺鍍功率和工作壓力皆會影響薄膜成長速率。濺鍍功率及工作壓力的增加皆會使薄膜成長速率加快。 在以濺鍍功率50 W、工作壓力 4mTorr成長Co/Si(100)薄膜時,發現鈷膜表面有特殊的三角錐結構,尺度約為100 nm。而改變濺鍍條件則無此現象。此錐狀物是由底層鈷層的柱狀晶向上成長,成長的Co膜為HCP結構,且鈷膜平面平行 HCP結構上的c 軸,和我們在磁性量測發現易軸在縱向的結果呈現一致。 且實驗發現成長Co/Si(100)薄膜及Co0.4Fe0.6/Si(100)薄膜時,表面粗糙度隨薄膜成長會先下降再增加。另外由表面磁光科爾效應儀的磁性量測結果發現Co/Si(100)薄膜之矯頑力也隨薄膜厚度增加先下降再增加,和表面粗糙度有相同的趨勢,證實磁性薄膜表面粗糙度會影響磁性薄膜之矯頑力。 另外,我們也進行本系實驗物理(III)課程改進研究。由問卷調查發現新增選修實驗對學生學習上有很大的幫助,且學生可提早認識當前研究的趨勢幫助其未來規劃。另外,我們也就各項觀察提供建議的改善方針,以期提升實驗課的深度與廣度。
  • Item
    可撓式全固態鋰離子二次電池之製作及特性分析
    (2014) 涂嘉良; Jia-Liang Tu
    可攜式電子產品於我們日常生活中漸漸扮演不可或缺之角色。現今隨著穿戴式裝置之使用量不斷劇增,可穩定提供電源之儲能材料被視為發展之重點,其中傳統鋰離子二次電池仍具有漏液及封裝上之限制,為了克服上述安全問題,且全固態鋰離子二次電池具備高能量密度及可撓式產品之應用等優點,因而深具取代傳統鋰離子二次電池之潛力。 本研究主要為製作與分析全固態鋰離子二次薄膜電池,其中以可撓式雲母片(Mica)作為基板,以射頻磁控濺鍍技術製備鋰鈷氧化物(lithium cobalt oxide; LiCoO2)為陰極材料,與鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)為固態電解質,依序沉積於以白金為電流收集器之雲母基板表面,進而再以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成電池組裝。 本研究乃探討不同熱退火溫度對於LiCoO2薄膜材料之影響與不同濺鍍環境之壓力對於LiPON薄膜材料之影響,並建立其最佳電化學表現。其中以粉末x光繞射儀(x-ray diffraction; XRD)鑑定樣品之晶相及其結晶度;以掃描式電子顯微鏡(scanning electron microscope; SEM)觀測樣品表面形貌與;並以x光電子能譜(x-ray photoelectron spectroscopy; XPS)分別量測樣品之電化學組成;此外利用交流阻抗測試計算電解質之離子導電度,並配合充放電儀研究材料之電容量與電化學循環表現。經上述鑑定發現經520℃後退火之LiCoO2薄膜為(101)晶面優選方向,充放電過程其鋰離子於晶格中擴散不受氧離子層阻擋之優勢,此外於5 mtorr條件下製備之LiPON薄膜具高含量之三重鍵結氮,且表面形貌及製程穩定性較高,其電解質薄膜之離子導電度可高達1.6×10-6 S/cm。以最佳濺鍍製程參數依序沉積於以白金為電流收集器之雲母基板表面,最後以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成全電池組裝,並實際使全電池以藍光LED作測試,並確實可以點亮藍光LED。