理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    基於標籤類別的權重之情感分析分類器
    (2024) 張庭瑋; Chang, Ting-Wei
    情感分析是自然語言處理的一個子領域,目的是依據文章中表達的正面或負面情感將文章分類。 多項式單純貝氏分類器、補集單純貝氏分類器和支援向量機是情緒分析中常用的三種方法。 為了改善這些分類器的結果,有許多監督/非監督術語權重方法可以用來輔助,這些方法會依據每個字在所有文章中的分佈情況給予不同的權重。 本論文提出了一種基於標籤的監督式術語權重來進一步改進這些分類器,此外,我們也提出使用 AFINN 字典將文字轉換到較低維度的情感特性來進行情感分析,避免過高維度帶來的龐大的計算量。我們分別用F1 分數、ROC 曲線和曲線下面積 (AUC)來比較我們所提的權重調整方法是否能幫助分類器有更好的表現。
  • Item
    運用類神經網路方法分析基於面向的情感極性分類
    (2022) 王皓平; Wang, Hao-Ping
    隨著時代以及科技技術的成長,人們不像過去一樣,需要查看報紙、購買雜誌、詢問左右鄰居的情報才能知道自己想要得知的資訊。在科技技術的成長下,不管是餐廳的評價、筆記型電腦的實用程度,大部分的人們都可以使用網際網路來查看是否有所想要的資訊。本論文使用的資料集由SemEval-2014 Task 4官方所提供,並且含有四項子任務:(一) Aspect term extraction、(二) Aspect term polarity、(三) Aspect category detection、(四) Aspect category polarity,本論文進行第二項子任務研究,判斷出句子中的面向詞是正面、負面或中立,評估方式採用Accuracy,並且與當年競賽結果相比較。本論文實驗方法將資料先進行前處理並且轉成詞向量作為輸入的來源,以及將極性做情感標籤,並且使用Bi-LSTM (Bi-directional Long Short-Term Memory)、Self-attention(自注意力機制)及使用Two-level encoding對資料進行訓練。最後去比對每種不同模型的準確率,結果顯示Two-level encoding預測準確率餐廳達82%,筆記型電腦則達78%。
  • Item
    以深度學習對包含長文之資料集進行情感分析
    (2022) 陳宜威; Chen, I-Wei
    隨著網際網路的蓬勃發展,越來越多的訊息在社群網站、線上購物網站、論壇等各種網路平台間傳遞,而這一些訊息可能都表達了人們的看法或是評價。但是只依靠人力來觀察如此龐大的資訊量是非常沒有效率的,因此如何讓電腦得以代替人類完成這一項工作量龐大的任務是必要的。自然語言處理(Natural Language Processing,NLP)是一種讓電腦可以理解人類語言的技術,而情感分析(Sentiment Analysis)則是NLP其中的一項常見應用。它能夠了解字句間所表達的情緒,比如分析網路上對於某些產品、名人、事件等事物的評論立場為何,像是有好感還是持有負面態度。本實驗使用含有長文的IMDB資料集進行情感分析,該資料集將評論分為正面和負面,並且建立深度學習模型讓它藉由評論內容判斷評論表達的情緒是正面或負面,除了基本的LSTM和BERT模型以外,本實驗還有嘗詴讓BERT合併BERT或LSTM模型,希望藉由增加模型獲得的特徵來提高準確度,並且對各種模型的實驗結果進行比較。
  • Item
    使用LRCN模型進行情感分析
    (2023) 羅湧程; Luo, Yong-Cheng
    情感分析是近年來自然語言處理領域中的一個熱門研究方向。然而傳統的深度學 習分類模型往往難以捕捉到文本內在的複雜特徵,導致分類效果不佳。因此,本研究 使用深度學習的長期循環卷積網路(long term recurrent convolutional networks, LRCN)模型來進行文本的情感分析。同時我們也討論 Word2Vec 和GloVe 兩個預訓練模型所建構的詞向量空間對文本分析的影響,並以Reddit 和 Twitter 兩個資料集來探討這兩種模型的分類表現。同時我們也將LRCN 模型與傳統的深度學習模型:Convolutional Neural Network( 卷積神經網路 、Recurrent Neural Network ( 循環神經網路 、Long short term memory( 長短記憶神經網路 做比較,我們發現LRCN 能夠更有效的去捕捉字與字之間的空間特徵,通過循環網路層提取文字序列間的關係,有較佳的模型表現。
  • Item
    利用臉書資訊探討網路新聞的吸引度及極性分析
    (2017) 楊登堯; Yang, Deng-Yao
    過去人們獲取資訊的途徑只有從談話、書籍、報章雜誌等媒體,資訊量的收集速度緩慢且數量有限,然而現今網路的發達以及科技改良所賜,網路的方便性及發達帶給了這個社會資訊化。 社群網站的興起(例如:facebook、twitter),讓許多人開始透過這些網路平台,迅速傳播新聞資訊或就生活上的知識進行交流與溝通。報紙雜誌等傳統媒體,也開始透過網路平台進行發佈。 然而在資訊爆炸的時代,人們該如何從這些大量的報導中獲取想要或者喜歡的資訊,而媒體又該如何從新聞內文中適當的撰寫以便吸引閱聽人,讓人們能夠喜歡閱讀該報導,並且可以從這些報導當中,發掘現今人們的新聞喜好傾向,這些都是目前值得研究者探討且著墨的地方。 本研究將首先利用情緒分析的技術,分析現在網路新聞內文經常使用哪些詞彙或語句,可激發閱聽人的情緒反應以增加其閱讀興趣。其次,為了更進一步了解新聞極性的趨勢,也就是正向的新聞比較受歡迎還是負向的新聞比較受歡迎,會先進行斷詞之後,利用TF-IDF值尋找出關鍵字,然後利用語料庫進行比對,得到正向詞與負向詞的資訊,接著再利用Facebook提供的讚數當作佐證,就可以看出現在人們是喜歡哪一類的新聞。 研究結果發現,閱聽者比較常關注負向新聞,並且本研究利用圖斯勒(Marc Trussler)和索羅卡(Stuart Soroka)在加拿大麥基爾大學(McGill University)的實驗結果相比對,顯示和從心理系角度所做的研究,有相符的結果,進而佐證本研究的可信度。
  • Item
    中文部落格文章之相關性擷取與意見傾向分析之研究
    (2015) 顏安孜; Yen, An-Zi
    隨著網路技術的發展,越來越多人透過網路分享自己的評論意見,如何在龐大的網路文章中,自動化分類文章意見傾向,是情感分析(Sentiment Analysis)重要的研究方向。在本論文中,本研究針對政論性文章,提出能擷取出與特定主題相關文章,並且進行文章的意見傾向分析的方法,意見傾向分類為正面、中立和負面。 為了能精確的分類文章,本研究提出非監督式和監督式學習方法,實驗分為擷取主題相關文章與主題相關文章意見傾向分析兩大部分。在非監督式方法中,本研究利用點對點相互資訊(Pointwise Mutual Information, PMI)的公式計算文中名詞和主題的相關程度,將相關程度高的名詞作為查詢擴充詞彙,若文章中包含主題詞或查詢擴充辭彙則代表與主題相關。然後,本研究分析主題相關文章中的句子結構,以lexicon-based的方法給予句子極性,並且探討句子中包含否定詞、轉折詞和句尾為問號對於極性的影響。 在監督式方法中,本研究選擇使用向量支援機器(SVM)進行文章分類,在主題相關文章擷取的實驗中,透過卡方檢驗(Chi-square test, CHI)的公式計算訓練資料的辭彙和類別為相關的分數,並將分數排序前20名的詞彙以兩個或三個為一組,本研究發現有些詞彙組合在同一篇文章中出現代表與主題相關。在主題相關文章意見傾向分析的實驗結果顯示,以詞彙在不同極性文章出現頻率選取訓練詞彙比使用卡方檢驗進行特徵挑選好,而特徵使用詞彙在訓練資料中的極性,比使用情感辭典的詞彙極性的結果好。 最後,比較非監督式與監督式學習方法的主題相關文章之意見傾向分析實驗結果,顯示監督式方法的結果比非監督式的方法好,精確率因為實驗主題不同,最高為70.84%,最低為65.49%。