理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
18 results
Search Results
Item 新穎能源材料之第一原理計算模擬與研究(2020) 劉啟佑; Liu, Chi-You為了降低石化燃料的使用,科學家們一直致力於尋找乾淨的替代能源,希望在未來使用液態或固態形式的能源。與此同時,也需要發展安全又具經濟效益的新能源儲存系統,最終的目標是尋找具有高能源密度、容易儲存及運輸、並且更為永續的能源。在本論文當中使用了計算化學的方法,在奈米至原子尺度下,藉由電子結構、催化性質和化學反應機構的探討,來改善並發展新的能源材料。總和來說,我們基於第一原理方法的理論模擬,針對不同能源與能源儲存系統的材料表面進行研究,包含了直接甲醇燃料電池(Direct methanol fuel cell, DMFC)、鋰硫(Li-S)電池、質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)和費托合成反應(Fischer-Tropsch synthesis, FTS)等領域。各部分詳細的介紹如下: 第一部份:直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究 在第三章中將針對液態的直接甲醇燃料電池(DMFC)進行討論。DMFC反應過程中產生的CO或其他碳氫化合物(CmHn)很容易就毒化Pt金屬陽極表面。我們研究CO及H2O於乾淨Pt2/MO2(110)以及多氧Pt2/o-MO2(110)表面(M = Ru及Ir)上的吸附現象。結果顯示使用多氧的表面能夠有效的降低CO及H2O的吸附能,並且讓CO與表面的OH基團以更低的活化能進行類水氣轉換(WGS-like)反應,減緩CO毒化的現象。 第二部分:鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析 第四章我們則針對鋰硫(Li-S)二次電池進行研究。近期的文獻顯示,若在陰陽極中間放置以碳為基底的材料做為中間層(interlayer),能夠有效改善含鋰多硫化物(LiPSs)的飛梭現象並增加電池壽命。我們建構了不同結構形式的異原子(N或S)取代的石墨稀表面,發現當使用含鋰的N及S共同取代石墨稀表面做為鋰硫電池中間層時,能夠讓LiPSs以完整吸附機制吸附,有效的減緩飛梭現象。 第三部分:Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響 第五章中探討了質子交換膜燃料電池(PEMFC)的陰極氧氣還原反應(ORR),當使用二維Tin+1CnT2與Pt/v-Tin+1CnT2 (n = 1 ~ 3, T = O and/or F)的材料時,不同取代基對於ORR反應過電壓η的影響。我們的結果顯示F的取代基在表面上鍵結較弱且較不穩定,與實驗上觀察到脫附或被取代的現象符合。但由於F取代基在表面上時,內層的Ti與C具有較高的共價性,有利於吸附物吸附並反應,導致使用含有F取代基的表面進行ORR時可以得到較低的過電壓η。 第四部份:利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應 在費托合成(FTS)中,C-C成鍵的效率是最重要的因素。在第六章中我們模擬了雙金屬中心的M1M2/N6h-CNT (M = Fe, Co, and Mn)表面,分析其電子結構及催化活性,並考慮了三種能夠增長碳鏈長度的C-C成鍵反應:[CO + CH3]、[CO + CH2]和[CH2 + CH2]。結果顯示,CH2單體在2Co/N6h和CoMn/N6h表面上能經由一個近乎為零的活化能,順利進行C-C成鍵反應。整體來說,我們分析了雙金屬中心的系統對於在FTS中增加CO轉換率並降低C1產物比例的可行性。Item 格林函數在不同切口奈米碳管的研究(2020) 詹敦皓; Chan, Tun-Hao在這個論文中我們透過格林函數研究了三種不同切口的奈米碳管的態密度及局部態 密度。這三種切口分別為:(1) 正切 (n, n) 扶倚奈米碳管、(2) 正切 (n, n) 鋸齒奈米碳 管以及 (3) 斜切 (n, n) 扶倚奈米碳管。我們透過兩種方法計算格林函數:(1) 迭代法以 及 (2) 積分法,其中迭代法利用到半無限系統的幾何自相似的特質,而積分法則是把石 墨烯上的 k 態來線性組合成符合邊界條件的態並對所有允許的態除以 (E − E λ k + i η ) 求 和。透過比較態密度與局部態密度我們發現在正切扶倚奈米碳管有週期性震盪、正切 鋸齒奈米碳管有邊界態,而這兩個現象在斜切扶椅奈米碳管都有發現。我們並利用拿 表面格林函數來研究斜切 (8, 8) 扶倚奈米碳管的透射率。Item 二維SSH模型的拓樸性質與分類(2020) 張家勳; Chang, Chia-Hsun當塊材具有拓樸性質時,其對應的邊界上會存在邊界態,這就是所謂的「塊材與邊 界對應性」。此對應可由簡單的一維模型 − SSH 模型或 extended SSH 模型來做驗證。 我們嘗試將一維 SSH 長鏈交錯編織以推廣成二維系統,並稱之為二維 SSH 模型。 我們發現透過調整二維 SSH 模型的參數,系統有可能為半金屬,弱拓樸絕緣體或 是一般的絕緣體。由於二維 SSH 模型具有時間反演對稱性,我們利用這個特性定義出 一個強拓樸量與兩個弱拓樸量,並用它們來為系統做分類。此外,我們也發現這個分 類方法等價於一個圖像化的分類方式。利用數值方法,我們驗證了二維 SSH 模型的塊 材與邊界對應性。最後,當選取特定的參數與邊界條件時,可以得出不同邊界型態的 奈米碳管的結果。Item 對奈米碳管電極間的分子結之第一原理研究(2009) 李欣翰; Lee, Hsin-Han早期傳統上探討穿透係數Transmission(電子在特定能量的傳輸效應)或電導率Conductivity(電子在整體能量的傳輸效應)大多針對以電極夾接塊材元件的系統是以電極間夾入塊材的系統,整體上,元件及電極仍維持晶體的性質。1980年代之後因製成技術的突破,而漸漸發展出奈米元件,或甚至是電極間以單一分子結 (single molecule junction銜接的系統),這探討這些尺度小於電子平均自由徑的元件系統,必須考慮量子傳輸(quantum transport)的模型。 由於實驗上的方便,起初研究單一分子結多是以金屬當做電極。在之後有實驗做出以奈米碳管為電極的single molecule junction [1,2],這樣的系統有別於在許多junction裡,金屬與分子間定義不清的鍵結,及不確定的幾何形狀,奈米碳管與分子間形成共價鍵的系統比較牢固,加上奈米碳管特有的quasi 1-dimension特性,使之更有研究價值。近年來對分子電子元件中量子傳輸的探討,是很受注目的課題, 本篇論文使用第一原理計算(ab-initio)探討奈米碳管電極間分子結的穿透係數,我們使用以密度泛函理論DFT(Density Function Theory)為架構的McDCAL(McGill-Device-CALculator)進行一系列的模擬分析。我們計算在chiral vector 為 (8,8) 的單層奈米碳管SWCNT(single wall Carbon Nano-Tube)之間以兩個等長的聚烯(polyene)分子構成的分子,然後和Tight binding理論計算的結果進行比對。而穿透係數是重要的基本特性之一,對分子電子元件的電流能有所了解,可用於I-V curve 的計算。Item 奈米碳管分子結間電子傳輸與干涉現象之第一原理研究(2013) 陳凱榆本篇論文以奈米碳管(Carbon Nanotube, CNT)與分子結構所形成的一維系統為題,利用第一原理(Ab initio)方法計算其傳輸性質;依據分子結構的不同,發現會有干涉現象的產生。藉由與緊束縛模型(Tight Binding model)所得的結果相互比對,透過傳輸係數(Transmission Coefficients)及態密度(Density of States, DOS)的分析,可歸納出影響類似此種結構之奈米電子元件的電子傳輸性質為何,並且進一步地了解量子傳輸理論(Quantum Transport Theory)。Item 奈米碳管電極之間分子結的電子傳輸研究(2017) 林明寬; Lin, Ming-Kuan本篇論文以斜切的armchair奈米碳管(carbon nanotube)作為分子結(molecular junction)中的電極。使用緊密束縛模型(tight-binding model)計算斜切的armchair奈米碳管、直切的armchair奈米碳管和直切的zigzag奈米碳管從表面到內部的局域態密度(local density of states)。直切的armchair奈米碳管和直切的zigzag奈米碳管的每一層局域態密度分別顯示三層循環的週期性振盪和局域的邊緣態(edge state)。斜切的armchair奈米碳管不只具有週期性振盪,也具有局域的邊緣態。在局域態密度的研究之後,我們把一條或兩條多烯(polyene)接在兩個斜切的armchair奈米碳管之間作為分子結。使用緊密束縛模型和第一原理(ab initio)方法研究分子結的電子傳輸性質。One-polyene分子結在費米能量(Fermi energy)的傳輸(transmission)數值接近1,所以它恢復了一條電子傳輸通道。Two-polyene分子結在費米能量的傳輸數值在0和2之間變化,所以它顯示了干涉效應。儘管緊密束縛模型和第一原理的結果大致相同,但是從這兩種方法得到的結果還是有不一致之處。藉由調整緊密束縛模型中參數的大小,研究分子結的傳輸性質如何變化。我們發現分子結的傳輸性質會受到來自於分子內的鍵結(intra-molecular bonding)強度、耦合(coupling)強度和on-site energy的影響。Item 除去氣體對於奈米碳管與水混和物之影響(2016) 陳駿仁; Chen, Chun-Jen疏水交互作用(hydrophobic interaction)被認為是非極性物質在水中會聚集的主要原因。已知水中的氣體是可以對該作用有增益的效果。若將疏水顆粒混合於水中,則除去氣體的混合物較富含空氣的混合物有較長的生命期。本研究以單層及多層奈米碳管的水混合物為材料,實驗除去氣體對於碳管與水混合物的影響。碳管於水中的生命期與所形成之結構是以攝影與動態光散射進行觀測。實驗中發現:除去氣體後,單層碳管於水中聚集的速率較未除氣的混合物中慢,且形成較緻密的碳管團塊。多曾碳管若未進行除氣,則碳管於水中形成類凝膠(gel-like)結構;此結構在除去氣體的碳管與水混合物中較未除氣者不明顯。實驗中所觀察到,除去氣體對單層與多層碳管的水混合物所產生之影響,是可以被石墨基板上所發現的表面奈米氣泡(surface nanobubble)解釋的。Item 動態光散射在氣體對亞微米尺度膠體分散體穩定性的影響的研究(2015) 鄭璋駿; Jeng, Jang-Jiunn我們研究氣體對膠體分散體問定性的影響。分別使用油(dodecane and squalane)和多層奈米碳管作為分散向,使其分散在水或是去氣體水中,樣品中不加入界面活性劑。利用動態光散射溶液中的油滴或是碳管團塊的大小進行量測,以觀察膠體溶液的穩定度。我們架設了一台動態光散射儀,並使用直徑38nm、500nm、1μm的聚苯乙烯小球進行校正。從指數函數與累積量展開擬合可以得到與樣品相符合的粒徑大小。但CONTIN的分析結果,無法確定可以得到愈樣品相符合的粒徑分布。在使用油進行的無界面活性劑乳膠溶液的實驗中,我們發現與水相比在去起體水中,油可以較容易的形成很小的油滴並可以較穩定的分散在水中,並在完成的乳膠溶液中加入氣體,對樣品的穩定性影響不大。在使用多層奈米碳管的實驗中,我們發現使用去起體水可以做出至少能穩定存在半個月的奈米碳管膠體分散體;而若是使奈米碳管膠體分散體與空氣劇烈混合,則會有明顯的聚合、沉澱現象。Item 奈米導電高分子聚苯胺複合材料—製備、特性及其應用(2010) 洪瑛鍈; Ying-Ying Horng聚苯胺由於其本身獨特的電化學與光學特性,已廣泛地應用在化學、生物檢測器、超級電容器和燃料電池等領域。近年來,一維奈米結構的導電高分子,包括奈米線、奈米棒和奈米管等,具備低維高表面積與有機導體的優勢,更有著令人期待的發展。唯其在實際的應用上,尚須更進一步地探討與研究。本論文探討奈米導電高分子聚苯胺複合材料—製備、特性及其應用,主要內容包括有葡萄糖氧化酶酵素電極的製備,繼而應用於葡萄糖的偵測;另則探討聚苯胺奈米線/碳布與聚苯胺和奈米碳管複合材料電極的製備,以及其在超級電容器的應用。 第一部份為利用電化學合成方法,直接將聚苯胺奈米線成長在碳布表層,並同時植入葡萄糖氧化酶以製備成酵素電極,繼而應用於葡萄糖濃度的偵測。碳布被選擇作為電流的收集器,乃是考慮其具備高導電性、化學穩定性及其高孔洞三維結構可提供高表面積,可提供聚苯胺奈米線更多的成長空間;另由於直接成長的聚苯胺奈米線與碳布之間,有效降低介面瑕疵因素,因而可展現優異的偵測靈敏度。本研究所製備一維聚苯胺奈米線具備高表面積特性,有利於較高濃度葡萄糖氧化酶的植入,可將葡萄糖的偵測靈敏度提高至~2.5 mAmM-1cm-2程度,相關葡萄糖濃度的偵測範圍為0-8 mM,具備可應用於人體葡萄糖濃度的偵側能力。 至於超級電容器的應用,本論文主要探討聚苯胺奈米線/碳布與聚苯胺與奈米碳管,兩種奈米聚苯胺複合材料電極。本研究所製備出的聚苯胺奈米線/碳布電極,不僅具備高單位重量電容值之外,同時也具備相當高的單位面積電容值,顯示出極佳的電容效能。根據定電流充放電分析,其單位重量電容值高達1079Fg-1 ,相關比能量與比功率則分別為100.9Whkg-1和 12.1 Wkg-1,至於其單位面積電容值可高達1.8 Fcm-2程度。然而基於聚苯胺本身的電子傳導性較差(相較於金屬導體),因此在可逆氧化還原轉變的過程中,通常會由於聚苯胺本身的內電阻效應而導致部份電子的損失,降低了電容的穩定性,致使面臨無法長時間重複循環使用的缺點。對於奈米碳管材料而言,由於具備良好的導電性和機械性質,因而奈米碳管和聚苯胺複合材料,可大幅改善電極的導電性。因此,聚苯胺與奈米碳管混合式複合材料所製備電極,不但可提升其功率密度,而且也因具備優良的械性質,有效降低因重複循環使用所造成電極結構上的破壞程度。Item 氧電漿修飾奈米碳管應用於燃料電池(2010) 康志銘在本研究中我們利用直接成長奈米碳管的方式來合成氧修飾的奈米碳管,探討在製程中加入氧氣對於成長奈米碳管的影響,並利用此碳材應用在甲醇氧化觸媒載體的應用。我們利用穿透式電子顯微鏡及場發射電子顯微鏡來觀察我們成長的含氧奈米碳管表面形貌,並以傅立葉紅外線光譜和電子能量損失圖譜來確認表面含氧的官能基的分佈。 我們利用射頻磁控濺鍍機將白金觸媒佈植於直接成長含氧奈米碳管(Pt/O-CNT)以及一般奈米碳管上(Pt/Untreated-CNT) ,並利用電化學的實驗來分析碳材載體對觸媒活性的影響。在甲醇氧化反應的測量中我們發現到氧修飾的奈米碳管有增進白金觸媒活性的現象,與Pt/Untreated-CNT相比,Pt/O-CNT可以提升80%的甲醇氧化電流,因為碳管表面含氧官能基的貢獻使得白金觸媒毒化的現象降低不少,因此在氧化甲醇實驗中得到良好的效果,而且含氧官能基均勻的分佈在碳管表面,增強白金觸媒和碳材之間的作用力,減少白金觸媒聚集的現象,因此在穩定度方面也有不錯的結果。