理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    含胺基取代聯吡啶釕錯合物修飾奈米碳管之研究與應用
    (2013) 張庭瑜; Ting Yu Chang
    有鑒於[Ru(bpy)3]2+衍生物具有獨特光電化學性質以及5-胺基菲羅啉(簡稱NH2-phen)可進行氧化聚合反應,本論文便以NH2-phen與[Ru(bpy)2]Cl2製備[Ru(bpy)2(NH2-phen)]2+,再藉由化學還原修飾法將其修飾於奈米碳管(簡稱MWNT )表面,以探討其應用潛力。根據螢光圖譜分析、原子力顯微術以及穿隧電子顯微術影像,我們證實 [Ru(bpy)2(NH2-phen)]2+可經由化學還原修飾法吸附於碳管表面,而吸附速率與[Ru(bpy)2(N2-phen)]2+經偶氮化後脫氮的反應速率有關,並與反應條件,如時間、溫度、維生素C以及亞硝酸鈉的濃度有關。本論文也以含[Ru(bpy)2(phen-NH2)]2+的修飾碳管微粒作為光敏劑,藉以誘發Thionine chloride進行氧化聚合反應。實驗結果顯示此修飾微粒可在UV光照射下加速Thionine chloride氧化聚合。此外,我們也將該奈米碳管製成修飾電極,藉以檢測葡萄糖、維生素C、尿酸以及NADH,發現修飾有[Ru(bpy)2(NH2-phen)]2+的碳管比未修飾的碳管具有較高靈敏度,可知[Ru(bpy)2(NH2-phen)]2+具有生化感測的應用潛力。
  • Item
    原子力顯微術應用:鐵蛋白結構變異分析
    (2013) 張家偉; CHANG, Chia-Wei
    本論文利用磁性模組原子力顯微術(Magnetic Force Microscopy簡稱MFM)、導電模組原子力顯微術(Conductive Atomic Force Microscopy簡稱C-AFM)以及力曲線(Force Curve)分析法辨識鐵蛋白與缺鐵鐵蛋白的結構差異。結果顯示,在施予偏壓下,鐵蛋白與探針間的引力比缺鐵鐵蛋白高,顯示二者結構可能因鐵核存在而有所差異。對此,我們也以磁鐵微粒與其他蛋白質進行比較。此外,有鑒於蛋白質經氫氧化鈉處理後會逐漸變性,我們也以之對鐵蛋白與缺鐵蛋白進行分析,發現二者均會因氫氧化鈉處理致使其與探針間的引力逐漸下降,二者間差異逐漸趨於一致。
  • Item
    利用STM探討Ru(bpy)2(phen-dione)2+與亞硼酸的電化學環合反應
    (2018) 唐婉瑜; Tang, Wan-Yu
    本研究合成系列釕金屬錯合物Ru(bpy)x(phen-dione)3-x2+ (x: 2, 3),再利用掃瞄穿隧顯微術(STM)探討其與3-氨基苯亞硼酸(APBA)在碳質表面上進行化學反應時的影像變化。實驗結果顯示APBA可經由化學與電化學進行去氮反應,吸附於石墨烯(HOPG)表面。若再對該HOPG施加負電壓,則Ru(bpy)2(phen-dione)2+可與所吸附的APBA進行環合反應,形成奈米薄膜。對於所吸附的Ru(bpy)2(phen-dione)2+,原子力顯微術(AFM)顯示其膜厚度約為13 Å。由於Ru(bpy)2(phen-dione)2+的分子大小約為13.7 Å,我們據此推測該Ru(bpy)2(phen-dione)2+薄膜係以單層吸附方式吸附於石墨烯表面。此外,我們也藉由化學還原修飾法,將APBA與Ru(bpy)2(phen-dione)2+修飾於多壁奈米碳管(MWCNT)表面。當釕金屬錯合物修飾於奈米碳管(簡稱Ru@CNT)後,我們發現其具有光磁轉換性質。若將Ru@CNT置於水面,再以波長473 nm的雷射光進行照射,該碳管會被磁場排斥,朝與磁場相反方向移動。根據這些實驗結果,我們認為Ru@CNT在常溫常壓下具有光磁轉換的性質與應用潛力。
  • Item
    奈米碳管光磁性研究與探討
    (2015) 林子晶; Lin, Zih-Jing
    有鑑於三聯吡啶釕錯合物(Tris(2,2'-bipyridine) ruthenium(Ⅱ),簡稱[Ru(bpy)3]2+)是一具電化學發光特性的光敏劑,可在可見光照射下進行metal-to-ligand charge transfer(簡稱MLCT),具光電應用潛力,本實驗遂製備[Ru(bpy)3]2+的5-胺基菲羅啉(5-amino-1,10- phenanthroline,簡稱NH2-phen)衍生物:Bis(2,2'-bipyridine)-5-amino- 1,10-phenanthroline ruthenium(Ⅱ)(簡稱[Ru(bpy)2(NH2-phen)]2+),再利用化學偶氮修飾法將之修飾在多層奈米碳管表面,得到含釕錯合物奈米碳管,簡稱為Ru@CNT,以進行光磁轉換探討。 實驗結果顯示:在合成條件為13.5 mg [Ru(bpy)2(NH2-phen)]2+、5 mg CNT、0.8 mg NaNO2、20 mg AA與10 mL的0.1 M HCl,反應溫度為80℃,反應時間24 h,能合成出表面修飾較為均勻的Ru@CNT。若以VSM、AC susceptibility分析法、磁性模組與導電模組AFM進行分析,我們發現Ru@CNT受到藍光雷射(ex: 473 nm)照射時,表面上的釕吸附微粒會產生電荷分離,電子組態會由單重態轉變成參重態,而在室溫下產生磁性。若進一步分析其電子躍遷能位,我們推論Ru@CNT受光激發時,電子轉移障礙約為0.5 eV。由於此時MFM所測得的相位差明顯增加,間接證實其光磁性來自電荷分離與電荷轉移,顯示Ru@CNT具有光電與光磁轉換應用潛力。
  • Item
    微焊接技術探討與微電路製備
    (2015) 簡仲葳; Chien, Chung-Wei
    有鑑於原子力顯微術(Atomic force microscopy,簡稱AFM)在奈米科技發展的應用潛力,本論文擬以導電模組原子力顯微技巧(Conducting-mode AFM)製備出微型電流調節閥裝置(Current rectifier)。根據本實驗室過去經驗,若對AFM探針施加偏壓,其針端電場可引起局部氧化(AFM-based field-induced local oxidation,簡稱ALO),使Phenothiazine化合物,如Thionine,進行氧化聚合反應而固定於探針下方導電載體表面。由於這些聚合高分子具有導電性,故可作為微焊接著物。此外,根據文獻報導,奈米碳管具有優越電子傳導能力。若能結合這兩種物質的特性,便可藉以製備微電流調節閥,探討電子在奈米碳管表面的傳導機制。實驗結果顯示多層奈米碳管是半導體,幾乎不具電子傳導功能,但若在其兩端以微焊技術焊上Thionine,則可使電流在其表面流通,顯示本論文所發展的微焊技術極具應用潛力。