理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    透過矽烷偶合反應對金屬有機骨架進行疏水性修飾並應用於二氧化碳捕捉
    (2024) 黃紹瑜; Huang, Shao-Yu
    MOFs因優秀的吸附能力、吸附選擇性及再生性,使其在捕獲二氧化碳十分有前景。然而,由於MOFs對於水氣的低穩定性及水與二氧化碳產生的競爭吸附,極大程度的影響其在真實煙道氣環境下的二氧化碳吸附量及選擇性。現今科學家們致力於研究各種策略去降低水氣對於MOF的影響,研究結果顯示,增加MOF的疏水性是一種有效降低水氣影響的方法。在本研究中,經過矽烷化合物的合成後修飾及乙醚洗滌的過程後,所選用的MOF均由親水性轉變為疏水性物質,且仍保有其二氧化碳捕捉能力,分別為:MIL-160的WCA從16 o變為148 o;MOF-303的WCA從13 o變為141 o;MIL-53-TDC的WCA從20 o變為136 o;CAU-23的WCA從14 o變為132 o。二氧化碳捕捉能力則分別為:MIL-160從原本的3.64變為3.69 mmol/g;MOF-303從原本的5.06變為4.47 mmol/g;MIL-53-TDC從原本的2.11變為2.63 mmol/g;CAU-23修飾前後數值不變,均為3.08 mmol/g。
  • Item
    金屬有機骨架疏水修飾及二氧化碳捕捉應用研究
    (2023) 黃嘉貞; Huang, Chia-Chen
    金屬有機骨架(Metal Organic Framework, MOF) 是一種常見的功能性孔洞材料,因其製備方法簡單、官能基可設計性、可調節的孔徑且具有高比表面積等優點使其成為研究中常見的材料。由於其微孔尺寸窄且具有路易斯鹼性位點可以作為二氧化碳捕捉的優良固體吸附劑。本研究以簡單的矽烷偶合反應使親水性MOF具有疏水性,成功解決濕度敏感MOF的水穩定性問題。疏水修飾後MOF的水接觸角顯著提高,A520(Al) C1-S 128∘、MOF-303(Al) C1-S 136∘、MIL-101-NH2(Al) C1-S 133∘、MOF-74(Mg) C1-S 98∘。經過疏水修飾後的MOF仍然保持著二氧化碳吸能力,A520(Al) C1-S 2.4 mmol/g、MOF-303(Al) C1-S 4.4 mmol/g, MOF-74(Mg) C1-S 4.5 mmol/g、MIL-101-NH2(Al) C1-S 3.4 mmol/g。研究結果顯示,具有Al-OH結構的MOF是製備矽烷疏水修飾MOF的關鍵條件,透過形成Si-O-Al鍵結,在MOF表面建立疏水塗層,降低與二氧化碳競爭吸附的水氣吸附量。
  • Item
    醇胺化合物捕捉二氧化碳研究:從理論方法到分子動力學模擬
    (2014) 黎學謙; Hsueh-Chien Li
    自人類經濟活動蓬勃發展,石化燃料的大量使用,導致二氧化碳的排放量大增,進而引發極端氣候。在國際上目前提出的 碳捕捉與碳封存。乙基醇胺(mono-ethanolamine)、二乙基醇胺(diethanolamine)、三乙基醇胺(triethanolamine)為目前商用的碳捕捉劑,主要用於火力發電廠所產生出的二氧化碳。這類捕捉劑與二氧化碳的反應機制目前仍然未知,過去的研究透過理論計算的方法提出可能的反應機制,然而不同的理論方法對於反應路徑的預測有不同,故在本論文的研究起始於理論方法的分析,進而利用分子動力學的模擬,來提出新的捕捉劑設計策略。 在理論方法的研究中提出了一個含有12對幾何優化過後的C1資料庫以測試15個密度泛涵理論方程。這15個密度泛涵理論方程已被發表改善電子交換項針對遠距離凡德瓦力。測試的標準是利用∆CCSD(T) 並經過方均根(RMS)統計後判定。在這個階段的研究中發現,ωB97 、ωB97X、ωB97XD 系列很適合計算涵有強凡德瓦力的氫鍵系統。BLYP-D 適合用在胺類化合物與二氧化碳吸附的組合。所以在之後的研究中使用BLYP-D來計算分子動力學反應。 過去設計捕捉劑的策略是藉由提高胺的級數,來增加其親核性。工業製程是藉由環氧乙烷通入氨氣合成乙基醇胺、二已基醇胺、和三乙基醇胺,並藉由反應條件的控制而調整溶液中化合物的比例。然而三級胺類對二氧化碳的吸附能力並未優於二級胺類,因此重新思考朝向增長碳鏈來作為設計方向。正丙醇胺(n-propanolamine)在計算結合能和電荷分析上,都明顯優於乙醇胺。為了解二氧化碳與捕捉劑在動力學上的影響,分別利用分子動力學模擬乙醇胺、丙醇胺20%和50%的無水混合二氧化碳溶液,連續模擬12萬步。模擬中發現正丙醇胺在徑向分配含數上明顯優於乙醇胺,其中發現溶液中氫鍵環境有顯著的影響。氫鍵環境越高的乙醇胺系統,會不利於捕捉劑對二氧化碳的吸附;而氫鍵數量較低的丙醇胺系統對二氧化碳的吸附有顯著的提升。 在本篇研究中探討ωB97泛涵方程適用於強凡德瓦力的氫鍵系統,BLYP-D可用於捕捉劑與二氧化碳反應的計算。分子動力學的研究探討新的分子設計策略的有效性,吸附能力的提升以及其氫鍵對於碳捕捉的影響。