理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    通用於第一人稱射擊遊戲外掛檢測機制之研究
    (2022) 陳逸文; Chen, Yi-Wen
    隨著科技的飛速發展,玩家可以在一台個人電腦上遊玩各種類型的遊戲,在各類型遊戲中,網路遊戲是大多數玩家最喜愛的遊戲類型,玩家為了在網路遊戲中獲得更好的成就,開始使用外掛程式達成個人無法實現的目標,基於上訴原因,作弊偵測成為了遊戲廠商的重大課題。本研究提出了一種基於影像辨識並以數據檢測輔助的作弊檢測系統,並分別使用VGG16、ResNet50、MobileNet V2、Xception和Inception v3 對誠實玩家和作弊玩家的瞄準軌跡進行檢測,研究結果表明,Inception V3 能最準確的分辨誠實玩家與作弊玩家。
  • Item
    利用隨機交互森林預測模型之應用
    (2023) 洪坊瑜; Hong, Fang-Yu
    根據生物、工業,以及商業統計資料,對於不同領域下的預測分析,舉例客戶行為、消費者需求或股票價格波動以及診斷病人等等,從中探討重要變數之間的交互作用,達到模型更準確的預測結果,本研究套用了隨機森林演算法,考慮交互效應予以改善模型並允許對解釋變數做交互作用進行有價值的洞察效果,而隨機交互作用森林(Random Interaction Forest, RIF)是隨機森林(Random Forest, RF)所衍生出來的一種新策略演算法,適合用於類別、連續變數或存活等資料型態加以預測,並明確地模擬建構森林中的決策樹所執行變數之間定性與定量的相互作用。在模擬研究中,使用了R包套件中"vivid"(Variable Importance and Variable Interactions Displays),呈現了機器學習模型中變數之間的重要性以及交互作用的可視覺化工具,同時也使用了R包中"diversityForest",透過投票分割抽樣,在隨機森林中進行複雜的分類程序,使用雙變數拆分對定量和定性交互效應進行建模。 交互森林(Interaction Forest, IF)帶有效果重要性度量(Effect Importance Measure, EIM),可用於識別具有高預測相關性的定量和定性交互作用的變數做應對。IF和EIM專注於易於解釋的交互形式。透過新的隨機交互森林結構,檢驗了線性迴歸模型、邏輯迴歸模型,增添了機器學習預測模型的能力。研究結果表明,當RIF模型存在交互作用時,不僅優於隨機森林和邏輯、迴歸分析方法。同時,證實RIF在執行許多情況下比傳統統計方法所創建的模型識別來的更為準確。並且交互作用為顯著時,RIF的性能也顯得更加優越表現,表示使用此方法不但可以提高業務流程和科學研究的效率。而且RIF在預測建模中的辨識度以及利用交互效果的部分都相對容易解釋,這是一項具有挑戰性且合適的工具。本文將透過這些方法的檢測應用於2012~2016年台北市死亡數實際資料進行評估。
  • Item
    基於機器學習預測有機分子之最高佔據分子軌域與最低未佔據分子軌域及其能隙
    (2023) 蘇柏豪; Sue, Bo-Hao
    近年來科技發展迅速,以大數據的電腦模擬研究也跟著興起,利用機器學習的方式透過演算法來精準預測結果,並輔佐實驗進展,從中尋找出新的可能性已然是種趨勢,而傳統的量化計算耗時長,成本相對高,且只能做少量的分子。HOMO、LUMO和Energy gap性質用於化學領域中,因其放光波長、電子傳遞、化學反應性等特性,廣泛應用於有機化學,本研究基於上述問題,使用了機器學習中的分群法、線性及非線性回歸的方式建立模型,逐步針對大量種類的有機化合物進行分析與探討。本研究利用機器學習中的Lasso回歸、K-means分群法、隨機森林演算法,用於預測114896種有機化學分子的HOMO、LUMO和能隙(Energy gap)性質,透過本研究之模型,得出:HOMO、LUMO、Energy gap的理論與預測值之MAE小於 0.3 eV,並且非線性回歸模型之校正R2值大於 0.93,顯示模型預測結果高度符合吾人預期之化學性質。透過本研究之分析結果,顯示本研究所建立之模型,除了有著良好的預測效果,其篩選出來的描述特徵與一般化學界的認知相吻合,未來可期運用本研究之相關概念與分析方法,對相關領域之數值分析有所貢獻。
  • Item
    基於單類別分類之構造長微震偵測架構設計
    (2021) 吳宇翔; Wu, Yu-Siang
    在臺灣,自發型構造長微震(以下簡稱「長微震」)之好發區域為中央山脈南段,具有(1)持續時間長,可達數分鐘至數小時、(2)不具明顯可見之體波、(3)能量富集於2至8 Hz間,並可在數十公里遠的測站有幾乎一致的到時特性,而偵測手段仰賴多測站的包絡化波形進行互相關係數與測站間到時差。前人研究也發現,在臺灣進行長微震偵測時,較吵雜的背景噪訊與短時間密集發生的區域地震(震央距50-200公里)容易與長微震波形混淆,使最終的長微震目錄底定必須經過人工目視,較為耗時且涉及主觀成分。為探索以機器學習進行地震與長微震自動分類的可能,本研究以k-最近鄰居法搭配29項特徵對2016年間5,796筆區域地震與6,746筆長微震事件進行分類,搭配循序向前特徵選取法(Sequential Forward Feature Selection)達到96.4至99.1 %分類率,初步證明運用機器學習於長微震分類上之可行性。然而訓練多類別分類器必須針對所有類別進行定義、抽樣與標籤化,難以實現於連續偵測。本研究進一步以單類別分類器支援向量資料描述(Support Vector Data Description),設計長微震連續偵測架構,其優勢在於只需要長微震資料進行訓練,而不需針對大量類別進行處理。藉由設立多測站投票制度與持續時間門檻以及使用2016年1月1日至7月18日長微震事件進行訓練,本研究成功於2016年7月19日至9月10日,使用三個測站偵測出共132,240秒長微震。當提升測站數至九站,只使用水平分量於單站決策並在多站投票時以各站訊噪比為權重,偵測出總計10,620秒的長微震事件,但經目視後保留之事件比例,從使用三站的5.8 %提升至九站的31.6 %,證實了應用單類別分類於多站長微震偵測的可行性。
  • Item
    數學形態學導出多參數持續同調之層狀結構
    (2022) 胡全燊; Hu, Chuan-Shen
    none
  • Item
    以智慧椅墊進行坐姿分析之研究
    (2019) 張雅婷; Chang, Ya-Ting
    在現代社會中,大部分人的生活型態,不論是工作或者休息,往往有很長的時間維 持坐姿。近年來有越來越多的疾病被證實與久坐有關。許多人認為坐姿是種休息的姿 勢,但研究中指出,比起站姿與躺姿,坐姿讓椎間盤承受的壓力更大,而不適當的坐 姿則更提升了椎間盤的壓力。 由於久坐逐漸成為現代人的生活習慣,所以適當的坐姿就顯得格外的重要。在日常 生活中,不適當的坐姿對於大多數的人而言,屬於較為舒適的姿勢,所以往往無心注 意自己的坐姿是否適當。故須透過工具協助來了解自己的坐姿情況。本研究設計一智 慧椅墊之雛形,旨在透過較低的成本 Arduino開發版與少量的壓力感測器,並且準確 的分類使用者的坐姿。 過去使用壓力感測器進行坐姿分類的相關研究中,透過傳統的機器學習方法進行坐 姿的分類,且使用較多數量的感器收集各類坐姿的資料。準確率落在百分之八十至百 分之九十。本研究使用一種傳統機器學習演算法與兩種深度學習之方法進行實驗,找 出適合進行坐姿分類之方式,並以特徵選擇實驗找到能夠準確分類坐姿之感測器數量 及擺放方式。 本研究除了使用限制坐姿使用資料進行坐姿分類模型訓練以及評估初步的分類結 果,並透過實際座椅使用情況資料,再次檢視此智慧椅墊在實際使用情形下,亦能有 良好的做姿分類表現。透過智慧椅墊設計實驗與特徵選擇實驗,本研究完成一智慧椅 墊,使用少量的感測器與基礎的物聯網開發板,降低了硬體成本,達成良好的坐姿分 類表現。
  • Item
    神經網際計算機器的集群神經元活躍能階分佈
    (2013) 林育賢; Lin, Yu-Sian
    施茂祥博士跟蔡豐聲博士於2013年在 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 提出神經網際計算機器的模型。在這篇論文的基礎之下,我們研究其神經網際計算機器的性質,改變其中刺激輸入的強弱、單一神經元影響其他神經元之連結數、以及影響神經元有序性的機率,觀察集群神經元之活躍能階的改變,並探討在何種條件下集群神經元會產生活躍能階的不穩定態。