理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    稀土鐵石榴石與鈣鈦礦奈米材料之結構、磁性和應用
    (2023) 劉仕渝; Liu, Shi-Yu
    鈣鈦礦和稀土石榴(REIG)薄膜具有優異的光學和磁光特性。因此,將這兩種材料結合在一起可以創造出具有可調控光學和磁性性能的異質結構,並應用於光學通信、光學記憶和磁光元件等領域。在本研究中,我們將深入探討鈣鈦礦和REIG薄膜各自的潛在價值。近年來,一些研究表明使用稀土元素(RE)元素代替釔(Y)來調節石榴石薄膜的應變誘導磁異向性。REIG薄膜(~100 nm)藉由脈衝雷射沉積法製備於(111)取向的釔鋁石榴石(YAG)基板上。釤、钬和釔鐵石榴石(SmIG, HoIG, and YIG)具有垂直於膜面的壓縮應變,而鉺和铥鐵石榴石(ErIG and TmIG)具有弱的拉伸應變。由於負磁致伸縮常數,因此SmIG和HoIG薄膜表現出相對強的垂直磁異向性(PMA)。隨著技術的發展,對高存儲容量和快訪問速度的需求不斷增加。因此我們選擇對擁有相對強PMA的SmIG薄膜進一步研究。藉由降低SmIG薄膜厚度,可使其具有更強的壓縮應變,進而獲得更強的PMA。相比之下,YIG在30-120奈米區間仍展現水平磁異向性(IMA)。這一發現表明磁性能受Y:Sm比的顯著影響。隨後,我們製備了一系列不同厚度、Sm摻雜濃度的SmYIG薄膜。振動樣品磁力計揭露隨著厚度的遞減和Sm摻雜濃度的增加,可使SmYIG薄膜具有較強的PMA。此外,我們展示了在不同Sm摻雜濃度下,SmYIG薄膜的臨界厚度。為基於REIG薄膜的高密度磁信息存儲鋪平道路。YIG與反鐵磁材料的結合因其在自旋泵等應用中的潛力而備受關注。因此,我們於YIG薄膜上沉積氧化鈷(CoOx)薄膜以研究介面效應。由於CoOx薄膜於高溫缺氧環境下製備,所以其表面區域由純CoO組成,界面區域則為CoO和Co的混合物。CoOx/YIG薄膜不僅表現出低溫下由CoO提供的磁耦合,還表現出由鐵磁Co提供室溫負交換偏置(RT-NEB)。與CoOx/YIG薄膜相比,我們於YIG薄膜上製造了進一步氧化的CoO薄膜,並觀察到室溫正交換偏置(RT-PEB)。RT-PEB隨著外加磁化場增加而增加,並在外加磁化場為500 Oe時飽和。隨著溫度降低,PEB 逐漸轉變為 NEB。這些結果清楚地表明 CoO/YIG 雙層系統中PEB和NEB共存,而PEB歸因於CoO界面自旋的反平行耦合,而NEB歸因於AFM-FM耦合。有機-無機鈣鈦礦(MAPbBr3)/鐵磁異質結構在光控自旋電子元件中已被廣泛探討。然而使用金屬鐵磁層作為底部電極仍然是一個挑戰。因此,我們提出插入氧化鋁(AlOx)或石墨烯(Gr)層的超薄異質界面來改善均勻性。通過原子力顯微鏡和掃描電子顯微鏡,我們觀察到MAPbBr3層成功地形成了緻密的連續薄膜。此外,AlO¬x或Gr層的存在可以有效地防止鈣鈦礦和鐵磁金屬薄膜之間的氧化和界面擴散。然而,MAPbBr3層在環境下很容易受溫度、濕度、氧氣濃度影響而分解。因此,我們製備了全無機銫鉛溴化物鈣鈦礦量子點(CsPbBr3 QDs)來替代鐵磁層上方的 MAPbBr3,並研究了藍光雷射對磁性的影響。隨著雷射照射時間的增加,CsPbBr3 QDs的表面形貌和特徵尺寸發生了顯著變化並逐漸演變,引發了一系列氧化還原和界面擴散過程,特別是在 CsPbBr3 QDs/Co異質結構的界面處。這些結果開啟了鈣鈦礦/鐵磁異質結構在自旋電子學應用研究。
  • Item
    以NFSI有機分子摻雜化學氣相沉積法石墨烯並提升石墨烯/矽-蕭基接面太陽能電池轉換效率
    (2012) 曾紀洋; Chi-Yang Tseng
    石墨烯,為碳碳原子之間以sp2鍵鍵結而成的二維結構材料,因為具有許多特殊的物理性質,像是高載子遷移率、高熱傳導性、優異的機械性質及光學性質,因此可望應用在電晶體、透明導電電極、偵測器以及光電元件上。 近年來,許多研究致力於改善以及探索石墨烯的電性,並可望開發於光電元件上的應用。在本篇論文中,我們以化學摻雜的方式摻雜NFSI((C6H5SO2)2NF)分子於石墨烯上。NSFI摻雜後的石墨烯,其電阻值明顯大幅的下降並且還維持著良好的穿透度。在拉曼圖譜中確認NFSI對石墨烯摻雜上的變化,摻雜前後比較,發現G band和2D band偏移分別為1581至 1586 cm-1、2631 至2643cm-1。更進一步了解摻雜前後電性上的改變,從石墨烯電晶體以及霍爾效應量測電性的結果,我們發現石墨烯電洞的載子濃度大幅度上升,證明了NFSI摻雜之石墨烯為P型態摻雜,而載子遷移率的下降主要是因為雜質散射所造成。 此外,我們結合了一層NFSI-石墨烯/n-矽形成蕭基接面太陽能電池做為探討。在這樣的結構元件下,以AM1.5照射所得到的轉換效率可以達到3.56%,與未摻雜前的1.74%提升了2倍左右。接著以電流—電壓、電容—電壓關係量測元件特性,可以發現效率的提升以及開路電壓的增高,主要是因為NFSI提高了石墨烯的載子濃度以及提升了元件系統中的內建電位。
  • Item
    利用靜電轉印石墨烯作為透明導電電極並應用於有機發光二極體上
    (2013) 王端瑋
    自從在2004年時,石墨烯這種用碳原子以蜂巢狀排列而成二維材料被發現以後,由於其在理論上具備各種優越的物理性質,包含對光良好的穿透度、具有相當高的導電度、只有單原子層的厚度、優異的機械強度以及非常穩定的化學性質。因此,近幾年石墨烯已經試圖被大量應用在各種光電元件上,並且被視為取代目前廣泛使用的透明導電電極氧化銦錫(ITO,Indium tin oxide)最有潛力的物質之一。為了可以有效地將石墨烯應用在光電元件上,各種石墨烯的製備和轉印的方法不斷地被研發以及改良,但是一直到現在為止,石墨烯仍然沒有辦法有效的取代氧化銦錫(ITO)主要是因為石墨烯在轉印的過程中常常會產生一些無法避免的破壞以及有機殘留物的影響使得整體元件的表現並不如我們所預期。因此,我們在這個研究裡致力於開發出一種良好的轉印方法並且實際應用於有機發光二極體上(OLED, Organic Light-Emitting Diode)。 因為現行最常被用來轉印石墨烯的兩種方法:PMMA法和Roll-to-Roll法都必須靠著有機物的輔助才能夠將石墨烯轉印至我們的目標基板上,而我們研發出以單純以靜電力吸引的方式,將石墨烯從銅箔上轉移到我們的目標基板上。整個過程中不需要任何有機物的支撐因此也就不會有任何殘留物的產生,進而得到一個乾淨且高品質的石墨烯。此單層的石墨烯電阻值大約為300"Ω/sq" ,I_D/I_G≅0.05。 最後,我們將轉印至目標基板的石墨烯作為透明導電電極,並製作成有機發光二極體,以Alq3作為發光層的螢光有機發光二極體,我們預期利用這種乾淨轉印的方式所得到的高品質的石墨烯能夠有效地提升光電元件的效益。