理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    空間各向異性與無序性之 (3+1)維量子海森堡模型的蒙地卡羅研究
    (2014) 高銘佐; Ming-Tso Kao
    本論文主要是使用蒙地卡羅方法 (Monte Carlo Method) 來模擬研究 (3+1) 維量子海森堡模型 (quantum Heisenberg model)。特別是我們探討了空間各向異性 (spatial anisotropy)與無序性 (disorder)對此模型特性之影響。 研究空間各向異性量子海森堡模型的動機是想要針對 dimerization 類別的海森堡模型,定量上去探討在量子臨界點附近 (quantum critical point) 新建立的普適關係 (universal relation),即 $T_N/\sqrt{c^3}\propto\sf{ M_s}$ 。其中 $T_N$ 是 Néel temperature ,$c$ 是自旋波速 (spin wave velocity)及 $M_s$ 是交錯磁化密度 (staggered magnetization density)。 我們所作的模擬結果與 Sushkov \cite{Sushkov:2012:PRB} 藉由級數展開法 (series expansion) 所得到的結果是一致的。 另外對無序性的研究,我們計算三維鍵結無序 (bond disorder) 量子海森堡模型的 $\overline{T_N}$ 和 $\overline{M_s}$ ,方法是引進兩個參數,即隨機耦合強度 $D$ 和隨機機率 $P$ ,來描述反鐵磁交換耦合 (exchange couplings) $J_{ij}$ 的隨機性。$D$ 和 $P$ 的值皆在 $0$ 和 $1$ 之間,每個交換耦合強度為 $J_{ij}(1+D)$ 或 $J_{ij}(1-D)$ 的機率分別為 $P $ 及 $(1-P)$ 。 我們發現對這種無序性模型在靠近乾淨系統附近,用平均交換耦合強度 $\overline{J}$ 歸一化的 $\overline{T_N}$ (即 $\overline{T_N}/\overline{J}$) 和交錯磁化密度 $\overline{M_s}$ 之間也呈現一種線性關係。
  • Item
    人工神經網路在物理上的應用:二維正方形晶格上Potts model 相變之研究
    (2018) 李建德; Li, Chien-De
    這篇論文主要探討了卷積神經網路(convolutional neural network)在二維正方形晶格上的Potts model之應用。我們使用卷積神經網路對蒙地卡羅演算法模擬出的自旋狀態加以分析。不同於相關文獻中常用的方法,在本次研究中,我們使用低溫有序相中的自旋狀態作為訓練集,並以輸出向量O ⃗之長度R做為主要觀測量。藉由此方法,我們得到了和已知文獻上一致的結果。此方法減少了以人工神經網路研究凝態模型時所耗費的計算資源。使用此方式訓練出的卷積神經網路除了可以偵測臨界溫度T_c外,亦可用來辨識相變的類型為一階或二階。