理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於Transformer的化合物-蛋白質交互作用預測方法之改進
    (2025) 陳威宇; Chen, Wei-Yu
    近年來,化合物-蛋白質交互作用 (Compound-Protein Interaction, CPI) 預測已經成為計算化學領域的研究熱點之一。隨著深度學習技術的興起,越來越多的基於神經網路的CPI預測方法得到了開發和應用。其中,Transformer模型是採用自注意力機制 (Self-attention) 的深度學習模型,具有強大的建模能力,因此有越來越多模型使用了此方法。不過,基於此方法的模型在預測CPI的任務上存在著一些問題,例如訓練的成本太大、對於3D空間相互作用的捕捉能力較弱等,而這些問題也影響到預測的準確率。為了找到比傳統Transformer還更能準確預測的方法,我們從模型架構、輸入特徵的選擇以及損失函數等面向尋找改進的方法,期望能找出可以提升準確率,甚至降低運算成本的方法。本論文以CAT-CPI (Ying et al., 2022) 的模型架構為基礎,結合TransformerCPI (Chen et al., 2020) 對於化合物特徵的提取方式,提出了基於Transformer的CPI預測之改進方法。TransformerCPI針對一維的SMILES序列產生了對應的原子特徵,而CAT-CPI則是使用二維的化合物圖像作為輸入,利用CNN學習化合物圖像的局部細節特徵,並且取得了優秀的結果。因此本模型結合兩者的特色,同時以一維的原子特徵和二維的分子圖像作為輸入,利用不同的化學結構資訊互補來提高模型的預測能力。此外我們也嘗試以Performer、Conformer等不同的架構取代傳統的Transformer來提升預測的準確率與運算的速度,並觀察不同的損失函數 (Loss Functions) 對於訓練結果的影響。我們使用Human、Celegans以及Davis資料集對所有改進方法進行實驗,發現與只使用分子圖像的方法相比,原子特徵與分子圖像結合的輸入能有效提升預測的準確率,且以Performer和Conformer等模型取代Transformer也可些微提升預測的能力。
  • Item
    結合化學指紋輔助原子嵌入和自注意力模型進行蛋白質-配體交互作用預測
    (2023) 鄭吉峰; Cheng, Chi-Feng
    在藥物研發中,Compound Protein Interaction是一個關鍵的領域,它關注藥物與蛋白質之間的相互作用,這些作用對於藥物的活性和效果至關重要。傳統上,CPI的研究主要依賴實驗室進行的耗時耗力的試驗,但隨著機器學習的快速發展,它在CPI研究中展現了許多優勢,它可以高效地處理大規模和複雜的生物信息數據,並自動學習特徵和模式,從而加速藥物研發的進程並降低成本。本研究旨在改進現有的CPI機器學習模型,以提升其預測能力。原始模型主要採用了Transformer模型的自注意機制來預測CPI反應性,這種機制能夠捕捉分子和蛋白質之間的局部和全局關係。我們認為進一步引入分子的化學指紋可以增加對分子特徵的理解,從而提高模型的性能。為此我們使用了PaDEL工具生成了GPCR資料集中所有分子的化學指紋。通過聚類分析,我們對資料集中不同化學指紋的分布情況進行了研究。這有助於我們理解分子的結構和性質之間的相似性和差異性。接著我們將這些化學指紋先後以三種方式引入模型訓練中,試圖從中探明其有效性並找出最適合的引入方法。首先,我們將化學指紋轉換為嵌入向量,以提供更全面的信息。其次,我們嘗試將化學指紋作為附加特徵引入模型,使模型能夠更完整的使用到化學指紋。最後,我們對化學指紋的數值進行TF-IDF的操作來擴展其變異性,以便模型能夠更好地理解分子之間的不同。在實驗結果中,我們比較了這三種模型在CPI預測性能上的差異,並分析了它們與先前聚類分析結果之間的關係。我們觀察到引入化學指紋後,模型的預測準確性和穩定性在特定化學指紋得到了改善,並且其與聚類分析結果之間存在一定的關聯性。