理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
22 results
Search Results
Item 基於圖神經網路之假新聞偵測研究(2023) 姚秉均; Yao, Bing-Jun在現今互聯網時代,隨著網路技術不斷發展,使得我們在閱覽資訊上也越來越便利,但與此同時,假新聞也藉著技術發展的順風車變得更容易生產傳播以及造成影響。所以本人便打算做和假新聞辨識相關的研究,找到較好的假新聞辨識的方法並提升假新聞辨識的準確率。由於看到CompareNet這一圖神經網路模型對於假新聞的辨識相較其他基礎方法效果更好。因此本研究是以CompareNet這一研究為基礎,基於LUN(Labeled Unreliable News Dataset)語料庫中的LUN-train語料庫創建了一個含有普通名詞、複數名詞、專有名詞、動詞、形容詞、副詞的知識庫,並將該知識庫和CompareNet這一研究相結合,使用LUN語料庫中的LUN-train語料庫來訓練模型、使用SLN(Satirical and Legitimate News Database)以及LUN語料庫中的LUN-test語料庫來對模型進行測試,提升假新聞辨識的準確率。Item 以矩陣乘法為基礎應用硬體加速器於一維卷積計算之研究(2022) 鄭博升; Cheng, Po-Sheng隨著電腦計算能力的提升,人工智慧得以受惠於大量的卷積計算來取得資料的特徵,使電腦可以幫我們處理各種複雜的任務。在提升卷積計算的速度的研究中,以矩陣乘法來實作卷積計算是常見的一種方式。本論文針對一維的卷積計算,提出一種矩陣排列的方式,將一維卷積計算得以用矩陣乘法來達成,並且進一步的使用通用型硬體加速器,來大幅提升矩陣乘法的計算效能。將本論文的方法應用於神經網路模型,並佈署在FPGA開發版上,經過實驗的驗證,我們可以精準的產出計算結果,並且加速整體神經網路模型的計算效能。Item 以Multi-Task CNN和One-to-Many資料增量技術為基礎的人臉辨識系統(2022) 邱筠茜; Chiu, Yun-Chien近年來生物辨識廣泛的運用在身份驗證上,其好處在於每個人皆擁有獨一無二的生理特徵,透過學習不同的特徵可以有效的區分個體。而人臉辨識系統基於生物辨識的基礎下,透過類神經網路去學習不同人臉間的特徵差異後,可以快速且準確地識別身分。 由於傳統的人臉辨識系統使用的人臉偵測架構快速,但偵測結果不穩定使辨 識結果受到影響,因此本論文欲使用穩定的人臉偵測架構使其擷取人臉的範圍 一致不會有誤判的情形,以及在資料量不足的情況下也透過使用資料增量產生 豐富的訓練資料,讓類神經網路可以有效的學習。 本實驗比較不同的偵測法則也證實使用 Multi-Task CNN 確實可以讓人臉辨 識系統在實際應用的場合上更加穩定,而資料增量使用模擬光影變化的作法, 使得影像可以學習光源分布的情形,透過使用 Multi-Task CNN 和資料增量來實 作人臉辨識系統,以降低光線對其所造成的影響。Item 以Density map為基礎之輕量化網路架構應用於室內人群計數之研究(2022) 吳振傑; WU, Zhen-Jie近年來由於受到疫情的影響,室內的人群數量管控就變得越來越重要,因此越來越多的人開始研究如何使用電腦視覺的方式,來解決傳統用人力的方式來計數人群數量的問題。本論文為了能夠在室內環境下進行人群計數,且方便應用於日常生活之中,於是提出了輕量化Density Map網路架構,Simple Indoor Crowd Counting Neural Network(SICCNet),使用MobileNetV2、Depthwise Convolution、Dilated Convolution等等的技術來達到較少的模型參數量及計算量,並且能夠提升模型的運算速度。SICCNet具有高效率、高準確度且耗費資源較少的特性,並且整合至低成本、體積小且運算受限的邊緣運算裝置,能夠保持辨識的準確率之餘,也能達到即時運算的效果,準確的預測出室內環境下的人數,因此可以應用在日常生活中。Item 基於CornerNet利用加速度計及陀螺儀達成偵測及辨識手勢之研究(2021) 陳胤霖; Chen, Yin-Lin隨著時代變遷,人工智慧也有著長足的進步,其中一項研究主題便是手勢辨識,手勢辨識根據使用資料,可分為依影像資料為主和依感測器資料為主,而本論文使用的資料為感測器資料。以往以感測器資料為主的手勢辨識研究中,模型無法自動分離手勢資料與背景資料,需要使用人工方式擷取手勢資料,在實際運用時會降低使用者的體驗感,所以本論文提出了一個解決方法,並設計一個模型使其能自動分離手勢與背景,並將手勢分類。本論文參考了影像辨識中將物件視為關鍵點的概念,將手勢分為兩個關鍵區間,透過偵測並配對這兩個關鍵區間,以達到自動偵測並分類手勢的效果。Item 人臉辨識系統特徵擷取之研究(2021) 彭涵芸; Peng, Han-Yun近年來人工智慧蓬勃發展,應用在眾多領域當中,因此使用生物特徵進行驗證也越來越普遍,通常會利用生物特徵的唯一性來區分生物個體,而人臉辨識是其中的一種方式。人臉辨識有三個步驟,人臉偵測、特徵擷取、人臉識別。在人臉辨識系統中,特徵擷取為重要的一環,有較佳的特徵,可以幫助系統後續的學習與歸納。特徵學習可分為兩類,監督式特徵學習和無監督式特徵學習,兩種方式各有優缺點。特徵擷取後很難評判選取的好壞,所以希望使用一些視覺化與數據分析的方式,來輔助我們判斷特徵的優劣。人臉辨識系統需要使用當地的資料集,所以在網路上收集亞洲人臉,用來豐富系統的資料集。在視覺化的部分使用Gradient-weighted Class Activation Mapping來觀察類神經網路關注的地方,進而了解擷取的特徵是否為人臉五官。在數據分析的部分使用影像相似度的方法,來觀察與分析特徵擷取結果的好壞。本論文找尋一種驗證機制,來確定無監督式特徵學習中的Autoencoder是否擷取到人臉的重要特徵,在利用上述的驗證機制,來驗證使用Autoencoder作為特徵擷取網路,應用於人臉辨識系統中可否有效提升準確度。Item 應用於MTCNN及關係類神經網路之快速人臉辨識系統(2021) 黃奕鈞; Huang, Yi-Chun人臉辨識是經由擷取人臉影像,分析其臉部特徵來進行身分認證的一種技術,近年來基於深度學習運用於人臉辨識逐漸成為主流的研究方向,藉由輸入大量影像資料,解析其向素值排列之向量資訊,學習人臉特徵,最終達到可以識別人臉的目的。使用MTCNN作為人臉檢測的部分,雖然其能夠穩定且精準地框選人臉,但是因為需要花費較大計算量,所以導致在檢測上的速度較為緩慢,進而使得整體系統效能受到影響。而在人臉識別的部分使用關係類神經網路架構,並且以一人一個模型的方式來增減辨識人數,雖然能夠對於每個人都能達到最佳的辨識度,但會在可辨識人數多的情況下,造成辨識效率降低的現象。本論文旨在針對人臉檢測以及人臉識別的部分做改進, MTCNN方面透過改進現有架構的方式,使得人臉檢測速度加快。而在人臉識別方面使用了演算法改變模型搜尋的方式,使得在辨識人數多的狀況下,也能夠具有流暢的辨識速度,最終整合這兩部分來獲得執行效率高之人臉辨識系統。Item 以FPGA實現具Self-aware與Self-adaptive特性之QoS頻寬分配系統(2021) 羅玉榮; Law, Yuk-Wing物聯網 (Internet of Things, IoT) 技術隨著科技的發展,逐漸普及到大眾的日常生活之中,很多新型的電子設備都會提供網路功能,使得設備彼此之間能夠互相連線、分享數據、上傳或下載資料等等,讓大眾的日常生活變得更加方便,也能讓開發者透過數據進行分析,改善產品的服務和使用者的體驗。然而,物聯網的興起會讓網路的負擔更大,頻寬需求量逐漸增加之餘,網路需求也變得更多樣化,使得有效的頻寬分配方式變得格外重要,頻寬分配系統也因此應運而生。本論文希望以服務品質 (Quality of Service, QoS) 為基礎,建立具有效的頻寬分配系統,讓頻寬能夠有效且合理地分配給不同的網路需求。建立有效的頻寬分配系統,首要考慮的是頻寬分配的方式,因此本論文以類神經網路建立頻寬分配系統,使系統能夠學習頻寬需求的變化,進而預測不同需求的頻寬需求量。此外,假如頻寬分配系統需要應用於一般家庭或辦公室之中,需要考慮到系統的建構成本和體積大小,因此本論文於FPGA開發板上實現頻寬分配系統,讓系統能夠具有快速運算、低成本和體積小之優點。並且以軟體定義網路之概念,建立出便利及彈性的管理方式,讓管理及部署變得簡單,使頻寬分配系統適合應用於需求多樣化的區域網路。Item 使用BERT-CNN進行Twitter 使用者之立場偵測(2022) 吳佩珊; WU, Pei-Shan在人們的文字表達敘述裡,「立場」可能包含正向或是負向的情緒用詞,贊成或反對的語氣,但這些特徵都無法直接與立場相關聯。人們可以利用支持一個對象或是說法來反對特定目標,也可以藉由反諷法,使得字面上不能直接了解真正所表達的意思,但真實意義正好與字面上相反。在本研究中,將已標記立場標籤、來自 Twitter 使用者所發表的推文(Tweet) 當作訓練資料,使用監督式學習的方式來訓練深度神經網路(DeepNeural Network)。本研究所使用的資料集來自於 2016 年舉辦的國際自然語言語意評測競賽(SemanticEvalution 2016, SemEval 2016)的Task 6 ,主辦單位所提供已標記立場的推文之訓練集與測試集,將其進行資料前處理並與類神經網路進行連接,其中使用到由Google 公司於2018年所提出之 BERT (Bidirectional Encoder Representations from Transformers)及卷積類神經網路(Convolutional Neural Network,CNN)。本研究針對SemEval 2016 Task 6中之子任務A進行實驗,使用監督式框架來偵測Twitter使用者的立場,評估方法採用F1分數,並與當年參加競賽之隊伍進行比較,本研究所使用之方法在數個項目中排名居前。主辦單位所提供之資料集僅有兩千多筆,因此在訓練模型的成效有一定限制,若是有更多的已標記之訓練集,應會獲得更好的成績。因此本研究再加入MPCHI資料集進行訓練,此資料集包含五個健康相關的主題,並已標計立場,並分別實驗測試集為SemEval、MPCHI以及SemEval加上MPCHI,觀察其實驗結果顯示有其幫助性,優於僅使用原始資料集之實驗結果。Item LSTM 法則應用於連續手勢辨識之研究──手勢辨識系統軟體與硬體於 FPGA 實作(2020) 鄧凱中; Teng, Kai-Chung本論文考量現實應用的方便性與實際應用,選擇現場可程式邏輯門陣列(Field Programmable Gate Array, FPGA)來硬體電路實現,並對電路運算單元參數化,以應變需求的變化。而演算法使用長短期記憶(Long Short-Term Memory,LSTM) [1]來訓練模型與手勢辨識。 LSTM 作為設計電路之模型,跟傳統遞歸神經網路(Recurrent Neural Networks, RNN) [2]不同的是,RNN 同一時間點 t 的輸入都在同一層面,將上一層的輸出當作下一層的輸入,但時間點 t 產生的梯度在往後傳遞幾層後就消失為一大難題。而 LSTM 使用 Input Gate、Output Gate 與 Forget Gate 三個控制閘成功的解決時間軸上梯度消失的問題,因此選擇 LSTM 為本論文的演算法則。 LSTM 模型以 Keras [3]平台來訓練與驗證,辨識率高達 98%。本論文的訓練與辨識資料庫使用擁有陀螺儀跟加速器的手機做為 Sensor 來收集手勢資料,並收集本實驗室多人的動作為資料庫,並對資料做圖形化來篩選優良的訓練資料。圖形或者影像辨識需要瞭解艱深且複雜的公式,還必須有能力編碼將公式實踐出來,對手勢的辨識如果使用傳統影像辨識的方法將會增加運算的時間、大量的運算資源消耗與記憶體儲存空間的需求。本論文分別使用手機陀螺儀與加速器的 X、Y、Z 軸數據為訓練資料,與傳統的影像辨識相比,差別為輸入資料每一筆的維度變成一維,節省硬體儲存資源與運算的複雜度。
- «
- 1 (current)
- 2
- 3
- »