理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    MuZero 演算法結合連續獲勝走步改良外圍開局五子棋程式
    (2022) 饒鏞; Jao, Yung
    2019年,DeepMind所開發的MuZero演算法使用「零知識」學習,將人工智慧帶往更加通用的研究領域。由於以此演算法所開發的Muzero-general原始版本外五棋程式,其模型訓練時只估計遊戲的結束狀態,增添了許多訓練時的不確定性,於是本研究嘗試以連續獲勝走步改良此外五棋程式。迫著走步是外五棋遊戲當中非常重要的獲勝手段,連續獲勝走步則是在正確使用迫著走步後,所得出的獲勝走步。本研究透過連續獲勝走步原則,進一步以對局過程中是否有提供以迫著搜索得出之連續獲勝走步,以及不同的迫著搜索設計結合不同情況的連續獲勝走步獎勵,設計了三種不同的改良方法。實驗結果表明,在相同的訓練時間下,三種方法均成功對原始版本進行改良,其中採用加入主動進攻走步之迫著搜索設計為棋力最強的方法。關鍵詞 : MuZero、神經網路、迫著搜索、連續獲勝走步
  • Item
    基於人體姿勢估計之跆拳道側踢分析
    (2023) 翁驊成; Weng, Hua-Cheng
    在跆拳道品勢 (Taekwondo Poomsae) 比賽或訓練中,評估該運動表現唯基於專家及教練的觀察,並根據其自身經驗會有不同的想法,存在多種公平性問題,此外,教練也無法全天候指導所有學員,人們對於量化評價方法和工具之需求日益增加。然而,跆拳道快速的肢體動作與結構極端繁複的技術,使量化困難且不易評估。跆拳道品勢單元技術中,側踢 (Side Kick) 屬於較複雜、評分比重較高的項目,因此,本論文針對側踢先行試驗,我們以臺北市立龍山國中以及國立臺灣師範大學的跆拳道品勢選手作為研究對象,並參考專家建議之評分標準,提出基於人體姿勢估計 (Human Pose Estimation) 之跆拳道側踢分析,通過專業認證的跆拳道側踢評分系統 (Taekwondo Side Kick Assessment System, SideKick),能夠有效地量化選手運動數據,分析並評估其側踢表現。 本研究中,我們首先建立了具高度公信力的跆拳道側踢資料集,由專業品勢教練進行動作質量評分;接著透過人體姿勢估計的方式,偵測人體關節點座標,精確獲取肢體運動角度及高度變化數據,使得運動特徵不易受場景影響,將攝影鏡頭校正難度降低;最後,我們參考專家提供之側踢建議量化特徵,分析各特徵的重要性排序,並利用機器學習的方式,訓練運動時空特徵及專家建議特徵,來預測選手整體側踢表現分數。 實驗以均方根誤差與交叉驗證評估多種回歸模型方法,最終選擇卷積神經網路模型,作為系統之評分模組。結果顯示實際應用之誤差為0.69,經信度檢驗,其結果也達顯著相關,在容許誤差為1的範圍內,準確率達86%。本研究提出之SideKick系統不需花費大量金錢及人力,且錄製設備取得容易。學員們能藉由本系統了解自身能力,教練們也可以在不限任何時間或地點下指導學員,提升團體訓練效益,並為未來遠程跆拳道品勢評價系統奠定基礎。
  • Item
    發展中神經網路的雜訊驅使同步性及可塑性
    (2010) 林宜樺; Yihua Lin
    人類的意識行為由大腦掌控,因此對於神經網路的構造及其內部的動力機制的研究是相當重要的,而構成神經網路的基本單位—神經元,其物理性質及其行為已被大量研究,但神經元之間的交互作用仍然是較不清楚的。 在我們的研究中,用一個簡單的連結機制建構一個二維的神經網路,利用HH model作為神經元模型,再配合兩種不同的學習效應—STDP及anti-STDP進行電腦模擬來研究其生長機制及神經網路的同步性現象。 在神經網路的生長中,我們對不同的生長機制與不同的分布密度及形狀對神經網路的性質做探討,也利用最短路徑以及叢集係數對網路的構造以及產生的現象做討論。再接著探究神經網路的同步性現象,分別在不同的生長機制下讓神經網路發展至各個不同階段時研究同步性的產生及同步性頻率,也觀察在神經網路在訊號傳遞出去的延遲時間對同步性頻率的影響。最後,我們針對兩種不同的學習效應在哪些情況下才會產生同步性進行模擬。