理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
8 results
Search Results
Item 以Multi-Task CNN和One-to-Many資料增量技術為基礎的人臉辨識系統(2022) 邱筠茜; Chiu, Yun-Chien近年來生物辨識廣泛的運用在身份驗證上,其好處在於每個人皆擁有獨一無二的生理特徵,透過學習不同的特徵可以有效的區分個體。而人臉辨識系統基於生物辨識的基礎下,透過類神經網路去學習不同人臉間的特徵差異後,可以快速且準確地識別身分。 由於傳統的人臉辨識系統使用的人臉偵測架構快速,但偵測結果不穩定使辨 識結果受到影響,因此本論文欲使用穩定的人臉偵測架構使其擷取人臉的範圍 一致不會有誤判的情形,以及在資料量不足的情況下也透過使用資料增量產生 豐富的訓練資料,讓類神經網路可以有效的學習。 本實驗比較不同的偵測法則也證實使用 Multi-Task CNN 確實可以讓人臉辨 識系統在實際應用的場合上更加穩定,而資料增量使用模擬光影變化的作法, 使得影像可以學習光源分布的情形,透過使用 Multi-Task CNN 和資料增量來實 作人臉辨識系統,以降低光線對其所造成的影響。Item 人臉辨識系統特徵擷取之研究(2021) 彭涵芸; Peng, Han-Yun近年來人工智慧蓬勃發展,應用在眾多領域當中,因此使用生物特徵進行驗證也越來越普遍,通常會利用生物特徵的唯一性來區分生物個體,而人臉辨識是其中的一種方式。人臉辨識有三個步驟,人臉偵測、特徵擷取、人臉識別。在人臉辨識系統中,特徵擷取為重要的一環,有較佳的特徵,可以幫助系統後續的學習與歸納。特徵學習可分為兩類,監督式特徵學習和無監督式特徵學習,兩種方式各有優缺點。特徵擷取後很難評判選取的好壞,所以希望使用一些視覺化與數據分析的方式,來輔助我們判斷特徵的優劣。人臉辨識系統需要使用當地的資料集,所以在網路上收集亞洲人臉,用來豐富系統的資料集。在視覺化的部分使用Gradient-weighted Class Activation Mapping來觀察類神經網路關注的地方,進而了解擷取的特徵是否為人臉五官。在數據分析的部分使用影像相似度的方法,來觀察與分析特徵擷取結果的好壞。本論文找尋一種驗證機制,來確定無監督式特徵學習中的Autoencoder是否擷取到人臉的重要特徵,在利用上述的驗證機制,來驗證使用Autoencoder作為特徵擷取網路,應用於人臉辨識系統中可否有效提升準確度。Item 應用於MTCNN及關係類神經網路之快速人臉辨識系統(2021) 黃奕鈞; Huang, Yi-Chun人臉辨識是經由擷取人臉影像,分析其臉部特徵來進行身分認證的一種技術,近年來基於深度學習運用於人臉辨識逐漸成為主流的研究方向,藉由輸入大量影像資料,解析其向素值排列之向量資訊,學習人臉特徵,最終達到可以識別人臉的目的。使用MTCNN作為人臉檢測的部分,雖然其能夠穩定且精準地框選人臉,但是因為需要花費較大計算量,所以導致在檢測上的速度較為緩慢,進而使得整體系統效能受到影響。而在人臉識別的部分使用關係類神經網路架構,並且以一人一個模型的方式來增減辨識人數,雖然能夠對於每個人都能達到最佳的辨識度,但會在可辨識人數多的情況下,造成辨識效率降低的現象。本論文旨在針對人臉檢測以及人臉識別的部分做改進, MTCNN方面透過改進現有架構的方式,使得人臉檢測速度加快。而在人臉識別方面使用了演算法改變模型搜尋的方式,使得在辨識人數多的狀況下,也能夠具有流暢的辨識速度,最終整合這兩部分來獲得執行效率高之人臉辨識系統。Item 以關係類神經網路與嵌入式平台為基礎實作人臉辨識之研究(2021) 蔡佳韋; Cai, Jia-Wei隨著科技的日新月異,使得人工智慧逐漸融入我們的生活,人工智慧的應用層面相當的廣泛,許多應用上都能看到它的影子,包括車牌辨識、股票預測分析、AOI 瑕疵檢測、推薦系統、聊天機器人等等,以及本論文的核心-人臉辨識都是常見的應用。 傳統的 Convolutional Neural Network 對於分類問題具有相當好的辨識力,但 是僅限於已知類別,對於未知類別是無法應對的,Convolutional Neural Network 會將其納入已知類別分數最高的一類。為了解決分類限制的問題,我們以 Relation Neural Network 的架構來做為主要開發的演算法則,由於它可以透過度量學習來 判斷影像與影像標的之間的相似度距離分數,透過設立門檻值來依據相似度分數 的高低,判定是已知類別或是未知類別。 在本論文中,每位已知者都共享相同的 Autoencoder 特徵擷取網路,並且有 屬於自己的打分數網路,不會因為一個人的加入或退出而影響整個網路導致需要 重新訓練,在管理層面相當有彈性。此外,為了增加系統的實用性,我們將類神 經網路整合至 Android App 專案,使其可以運行在低成本且輕量化的嵌入式平台, 在保持著與原有準確度及速度的情況之下,達到邊緣運算的成效。Item 基於臉部偵測及CNN模型之硬體臉部辨識系統(2019) 謝斯宇; Xie, Si-Yu本論文透過FPGA(Field Programmable Gate Array)的特性,如運算速度快、功率消耗低以及可攜性高等,來實現基於簡單CNN Model LeNet-5的人臉即時辨識系統。 LeNet-5是簡單的CNN Model,對於複雜背景的影像有著極低的辨識率,為了改善其缺點,有兩種作法。第一,使用較為複雜的CNN Model如VGG-Net16等,第二,新增額外的前處理人臉偵測方式來改善。 如果使用較為複雜的CNN,在現有基於複雜的CNN電路絕大多數是使用PE (Process Element)Array的架構,每層電路共享相同的運算單元,而這種方法會造成一些問題,硬體資源消耗高、硬體設計複雜以及Latency長等問題。所以本論文是使用較為簡單的CNN來設計電路,根據軟體模型不同層的特性去做不同的設計,藉由改善電路的架構,使得每一層電路部分重疊的方式,提升電路平行計算的能力,進而提高電路的運算速度。 本論文使用簡單的CNN電路搭配人臉偵測的方式,來實現即時人臉辨識系統,不僅辨識率足以跟複雜的CNN匹敵之外,更重要的是我們只需花成本低的硬體規格就能實現實際的應用,如手機上的APP人臉解鎖功能以及家庭人臉辨識等應用,符合普及計算(Pervasive Computing)的概念。Item 低面積BWNN積體電路設計及應用於人臉辨識之研究(2019) 張茗雅; Chang, Ming-Ya人工智慧議題在近幾年來竄起,以及類神經網路的快速發展,使得我們的生活逐漸加入了類神經網路的應用,例如:股價預測、語音辨識、人臉辨識,尤其在APPLE公司推出了加入臉部辨識的手機機型後,帶給人們更多的便利性,也讓人臉辨識議題得到更多的關注。 然而裝載在行動裝置上勢必需要低功率且不能使用太多的硬體資源,因此本論文的研究目的是設計低面積電路於FPGA上實作人臉辨識。不過利於圖像辨識的摺積神經網路是利用浮點數做運算,這會造成硬體的消耗資源上升,為此本論文使用二元化類神經網路來實現人臉辨識,藉由量化模型的方式下降硬體面積,二元化類神經網路相較於摺積神經網路辨識率是較低的,於是本論文捨棄使用量化活化函數只保留量化參數,簡稱BWNN(Binarized Weights Neural Networks),以此可以達到與摺積神經網路相匹敵的辨識效能。 本論文亦設計Partial output架構,此能更加降低硬體的消耗資源,依實驗結果顯示,本論文能兼具低面積、低消耗功率且又有著高辨識率的優點,因此可以在更小的晶片上實現人臉辨識系統,使得在生活中能更被廣泛應用。Item 利用機率圖模型於影片上之人臉辨識研究(2009) 詹依佳針對影片上的人臉辨識問題,本論文提出一個機率圖模型來解決並將其公式化。首先,我們將此問題分成兩個部份來探討,分別為相似度之計算與遞移機率,其中相似度之計算可被視作為傳統的單張影像之人臉辨識的結果,在此篇論文中,我們採用二維線性鑑別分析法(2DLDA)摘取特徵,再藉由高斯分佈來估算相似度。而遞移機率則是計算先前時間點的狀態轉移到此時間點的狀態之機率,我們可將遞移機率分成兩個部份來估算,其一為人與人的遞移機率,另一個則為姿勢轉換的遞移機率,希望藉由相鄰影像的時間關係修正錯誤的辨識結果與提升準確率。在本論文的實驗中,我們使用在國際上常採用的 Honda/UCSD 資料庫以及本實驗室自行建立的VIPlab資料庫。實驗證明本研究提出之方法可適用於不同的資料庫,且實驗結果也有90%以上的正確率。Item 基於智慧型裝置之多使用者即時人臉辨識及權限控管研究(2014) 李鈺新; li-Yu-Sin人臉辨識是電腦視覺裡面一個重要的技術,近幾年由於身分認證,金融卡認證的需求日益增加,傳統的識別方法如密碼,身分證號碼存在可能的風險,而人臉辨識應用在智慧型手機上的需求更是日益漸增,像是身分認證,信用卡認證,手機解鎖,門禁管理,照片庫分類等等,而以手機上不同使用者登入來說,密碼以及圖形的輸入都存在著可以模仿的風險,所以生理特徵作為辨識的方法變得更為安全,也有其存在的必要性,現有的方法很多像是指紋,眼球虹膜,但在這些方法中,人臉辨識所需要的設備最為低價且最容易取得,也相對便宜。 本研究提出一個有效且快速的流程來辨識人臉,做為手機或平板電腦上的多使用者權限控管功能,亦可以應用到其他身分辨識的應用上,由於平板電腦的運算能力相對於一般電腦是較為薄弱的,所以本論文提出特徵擷取運算速度較快的noise-resilient LBP演算法,和特徵群聚法來解決平板電腦上記憶體不足的問題,研究方法共分成四個部分,一開始做人臉偵測找出人臉位置,再對該張人臉做影像前處理來克服不同光線的影響,提出noise-resilient LBP演算法進行特徵擷取,由於訓練集人臉特徵過多,因此本研究亦提出特徵群聚法來找出具有代表性的特徵,最後則是特徵距離相似度計算。