理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    基於追蹤補償方法之籃球球員追蹤
    (2024) 陳宥睿; Chen, You-Ruei
    現今資訊科技蓬勃發展,電腦視覺技術經常應用於我們生活的周遭,而物件追蹤更是一項關鍵的技術,應用於自駕車、智慧行人追蹤和體育運動項目等領域。以籃球比賽中的球員為例,透過鏡頭追蹤球員在球場上的移動軌跡,可以對比賽進行詳細分析。針對現有的一般追蹤方法(YOLOv7+StrongSORT),由於球員間的遮擋或重疊,常常會發生球員ID變換(ID Switch)且無法復原該球員原有的ID(Identifier)的情況。為了解決這一問題,我們提出了追蹤補償方法,該方法能在ID變換時匹配回先前的ID,從而提升球員追蹤的準確性。 在實驗結果中,我們選擇了在一般追蹤方法之下加入球員追蹤補償方法的架構(實驗組)以及僅使用一般追蹤方法的架構(對照組)進行比較。在MOTA(Multiple Object Tracking Accuracy)的數據上,對照組與實驗組的表現都高於90%。在評估球員ID變換時復原球員ID的整體ID變換復原率(ID Switch Recovery Rate)上,使用球員追蹤補償方法的實驗組得到了74%的整體ID變換復原率,而對照組只有48%。在整體追蹤準確度上,實驗組的IDF1(Identification F-Score)達到79%,而對照組則只有66%。從數據結果表明,使用球員追蹤補償方法後,整體ID變換復原率有明顯的提升,能夠減少球員ID在變換後無法復原的問題,從而使得在整體追蹤準確度上,IDF1得到顯著提升。
  • Item
    用特徵選擇和數據平衡對高維且分佈不均的二元資料做類別預測
    (2022) 蘇立鴻; Su, Li-Hung
    近年來,機器學習 (ML) 在資料探勘和預測方面逐漸流行;與傳統的統計訓練相比,ML 有名的是在預測或分類數據方面的高準確度,但仍然存在一些限制。首先是如果資料的分布高度不平均,ML 算法會遇到準確度悖論,意思是說它只會對多數類別進行預測,我們使用採樣方法來解決這個問題。其次是面對高維資料時的計算時間,我們使用特徵選擇方法來解決這個問題。在前面的資料預處理之後,我們考慮四種 ML 算法:邏輯迴歸、K-近鄰 (KNN) 、隨機森林 (RF) 和極限梯度提升 (XGBoost) 來比較模型的性能。我們通過具有 687 個變數和 40041 個觀察值的醫療數據集急性腎損傷 (AKI) 演示了上述過程。主要結果是他們是否在 AKI 上復發。結果表明,XGBoost 在接受者操作特徵曲線下的面積 (AUC-ROC) 方面具有最佳性能。對於醫療數據集,鈉、速尿、芬太尼、布美他尼、多巴胺、胰島素、白蛋白、甘油和腎上腺素是最具影響力的藥物,CCS1581 是影響最大的疾病。
  • Item
    應用於遠距教學之學習專注程度偵測研究
    (2020) 陳文賢; Chen, Wen-Xian
    本研究進行學習專注度偵測的研究,藉由專注度偵測降低因為不專注導致學習進度的落後,並且將研究應用在較需要偵測專注度的遠距教學環境。本研究提出藉由人臉偵測和機器學習判斷影片中每張影像人臉的視線位置,透過發呆偵測以及臉部位移偵測取得動作資訊,使用影像分段處理以及滑動窗口處理連續性的影像,將影片的每個區段判斷成專心或不專心的狀態。 實驗資料來源包括高中補習班補課以及大學遠距教學兩種不同類型的學習影片,實驗結果發現專心行為判定的準確度為93%,不專心行為判定的準確度為81%。由結果得知本研究方法能有效地偵測到出現不專心行為的時間,透過臉部位移偵測方法也能避免做筆記的行為被判定為不專心。
  • Item
    電影評論之助益性分析研究
    (2018) 徐志廷; Hsu, Chih-Ting
    現今網際網路的蓬勃發展下,巨大的資料量已經是無可避免的趨勢,其中也包含了使用者留下的評論。眾多的評論中不一定每則都是有用的資訊,因此從大量的使用者評論中篩選出有助益性的評論,是本篇論文的研究目標。 評論的有助益性(review helpfulness)並沒有一個標準的定義,只要能幫助使用者有所思考,就能是助益性的一種。因此本研究嘗試透過各項特徵給定評論分數,作為判斷的依據。 本篇論文以雅虎電影中文短篇評論做為研究題材,使用中央研究院中文斷詞系統先將評論進行斷詞處理,再從資料裡找出TFIDF關鍵詞、詞性及評論長度。其中TFIDF關鍵詞經過教育部線上辭典進行同/反義詞擴充,並使用臺灣大學建立的情緒詞詞典NTUSD (National Taiwan University Semantic Dictionary)進行比對,找出每則評論所包含的情緒詞,且計算情緒詞出現的次數。並使用SVM訓練模型及預測結果,得到了79.7%的準確率。
  • Item
    新聞文件中意見句自動擷取及意見持有者辨識之研究
    (2018) 陳崇儒; Chen, Choung-Ru
    網路的發達,帶給人們便利。但每天都有大量的文本資訊需要閱讀,這時便可利用意見探勘擷取文本中人們感興趣之部分。而通常人們對文章會感興趣的部分都是誰發表什麼意見或是誰提出什麼看法,而這些描述的句子在文章中便稱為意見句。本研究提出監督式之機器學習方法,首先找出文章的意見句,再辨識意見句中的文章作者意見以及意見持有者。 利用自然語言處理之方法辨識文章作者以及意見持有者,其中方法包括Tokenization、蒐集意見詞、Stemming、尋找意見句、詞性標記、具名實體辨識和文章作者以及意見持有者之特徵擷取。而在特徵擷取部分,本論文利用詞彙相關資訊、詞性相關資訊、標點符號相關資訊、具名實體相關資訊、句法相關資訊、意見詞資訊以及文句組成相關資訊等特徵辨識文章中意見句之文章作者意見以及意見持有者。 實驗成果顯示在英語新聞文章中,文章作者意見辨識可以達到F-1值69.05%的效能;意見持有者辨識可以達到F-1值72.06%的效能。 關鍵字:意見探勘、意見句擷取、意見持有者辨識、機器學習、監督式學習
  • Item
    使用機器學習方法分析有機分子之螢光波長
    (2018) 羅少廷; Luo, Shao-Ting
    由於目前科技的進步相當快速,各項應用對於螢光材料的要求條件也日趨嚴苛,故針對有機分子進行波長的分析研究,以期望找到更好的有機螢光分子。 有機螢光材料具有相當廣泛的應用。有機螢光色素除了一般民生產品的螢光應用(如螢光紡織品、螢光油墨、螢光塑膠製品等)之外,有機螢光色素在螢光檢驗/生物探針/標示方面的應用可以說是非常廣泛。 因此,我們找尋了大量的有機分子來做分析研究。針對有機分子的結構特性,其中包括結構和電性組成的特徵值,來和螢光放光波長來進行機器學習和演算法的分析。以期望找到其中的關鍵因素,對於螢光分子材料的選擇和設計有更精準的方向。 此篇論文應用了目前正在發展中的機器學習方法來進行螢光分子的挑選,我們使用了Reaxys化學資料庫的分子結構檔案和波長數據,有了這兩個資訊;我們可以推展到機器學習的使用。 先將分子結構檔案(檔案類型: .smile)使用PaDEL結構描述符計算軟體,計算出大量結構檔轉換出的描述符,這些描述符包括電子結構和分子結構。有了大量的分子描述符,我們使用隨機森林演算法挑選出其中與波長數據關聯性較高的描述符,挑選了十個描述符,將這些重要性較高描述符與波長進行支持向量機回歸演算法,並建構出回歸模型,利用此回歸模型進行預測,並將預測波長與訓練用的Reaxys原始波長數進行線性比對,探討其精確性。