理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    應用對比式演算法則於印刷電路板的自動元件檢測方法之研究
    (2023) 鍾暿峒; Chung, Si-Tung
    在現今工業的生產製程中,檢測產品上的瑕疵常會利用到自動光學檢測,透過將攝影裝置架設在產線上進行檢測。而印刷電路板做為電子工業製品的大宗,檢測上方的細小元件的數量和位置是一大難題。由於電子元件種類繁多,為了自動化檢測元件,建立並訓練類神經網路模型被視為一種解決方法。因為模型可以從大量的樣本中學習到特徵而且具備很高的辨識準確度,而其計算過程可以透過GPU的並行處理能力得到很快的推論速度。良好的模型架構可以讓模型適應不同的元件種類,同時對於增減元件可以具有更高的可擴展性來應對需求的變化。然而,現有的物件檢測模型對於小目標的檢測還無法達到高準確度,而工廠產線上的環境光源變化也增加了模型辨識元件的困難度。因此,對於現有的自動元件檢測方法,本論文以對比式理論為基礎,提出了一套使用在類神經網路模型的訓練方法。經過此方法訓練的模型可以在不同環境光線的影響下,依然能正確檢測出印刷電路板上的電子元件。由於工廠的產線不會只生產同一種產品,元件檢測方法應該要能夠應對不同的需求。但是,若元件的種類增加,會降低現有方法辨識的準確度。因此,本論文提出具有高度彈性的模型架構,可以根據不同的元件種類調整,且能檢測多種元件,也具有高準確度。實際情況下,待檢測的印刷電路板並非固定在產線上。若要做到Real-time檢測,需要邊緣運算裝置與攝影裝置搭配使用。而邊緣運算裝置的硬體資源有限,具備高準確度的模型往往有很大的計算量和總參數量。因此,本論文的模型架構會在增加少量參數的同時維持辨識的準確度,並能夠在邊緣運算裝置上正常運行。
  • Item
    電腦暗棋之人工智慧改良
    (2011) 勞永祥; Lou Weng Cheong
    一直以來電腦棋類人工智慧的發展主要集中在完全資訊的遊戲,完全資訊的棋類遊戲,盤面的資訊能完全掌握,審局資訊充足,並不含機率的成分。 電腦暗棋是屬於不完全資訊含機率性的棋類遊戲,不像西洋棋、中國象棋是屬於完全資訊的棋類遊戲,如果用一般遊戲樹進行搜尋,在走棋與翻棋夾雜的情況下,若需要對未翻棋子也要作走步搜尋,則需要對所有的未翻棋子都作假設模擬,以求得一個接近的結果。但並不容易準確的審出結果。 經過ICGA 2010、TAAI 2010及台大資工所game theory課程等多次電腦暗棋比賽,由國立東華大學資訊工程所、國立台灣師範大學資訊工程所以及國立臺灣大學資訊工程所等所開發的電腦暗棋程式都有著共同問題,就是走子或翻棋,都還不太理想。 由於無法合理地走子或翻棋,導致走閒步,棋局無進展。這樣的結果使得在電腦暗棋的比賽中,往往優勢的一方也因為無目標,局勢無法進展,而變成平手結果。 本論文主要提出電腦暗棋的一套新的策略以解決局勢無法順利進展的問題。另外提出更準確的棋子間距離影響力之計算方法。實測結果顯示,本程式Black Cat 比起去年ICGA 2010及TAAI 2010的亞軍程式Dark Chess Beta(本校研究生謝政孝所研發)約有五成六的贏率。
  • Item
    吹牛骰子之人工智慧改良
    (2011) 唐心皓; Hsin-Hao Tang
      吹牛骰子主要分為individual hand(多人共用一副骰子)與common hand(玩家各自擁有一副骰子)兩種。其中individual hand類型在過去已有些許研究成果,例如使用近似模擬法、經驗法則、對手行為模擬與動態規劃等。而common hand類型於2009年由國立台灣師範大學黃信翰研究生發表吹牛骰子之人工智慧論文中首度呈現研究結果。其捨棄傳統常用的賽局樹搜尋與亂數模擬法等耗用大量計算資源的方法,利用賽局理論,以一種簡單明快的作法來達到此遊戲的最佳(或較佳)玩法,並採用貝氏信賴網路,在連續對局中對網路進行訓練,達成對手行為模擬的效果,藉此發掘對手的弱點來提高勝率。此為common hand類型的吹牛骰子之創新與突破的研究,對於其他與各種啟發式規則所實作之程式均有六至七成的勝率,並且與具有一定水準的人類玩家對戰,也有與之抗衡的能力。   本論文主要針對黃信翰研究生的吹牛骰子之人工智慧程式加以改良,並提出更佳的電腦決策流程,以期提高與其他電腦程式和人類玩家對戰的能力。   實驗結果顯示,與黃信翰研究生的吹牛骰子之人工智慧程式對局,勝率約為56%;與目前網路上吹牛骰子程式對局,勝率可達八成以上。
  • Item
    暗棋中棋種間食物鏈關係之探討與實作
    (2010) 謝政孝
    電腦棋類一直是人工智慧發展的重要領域之一,而電腦暗棋至今仍較少人對其做較深入的研究。暗棋是屬於不完全資訊含機率性的棋類遊戲,不像西洋棋、象棋是屬於完全資訊的棋類遊戲,所以如果用一般遊戲樹進行搜尋,在走棋與翻棋夾雜的情況下,會因分枝度過大而無法做深入的搜尋,因此難以做出較佳的決策。 本論文希望改良先前謝曜安研究生的暗棋程式,首先改進他的走步生成方式,與審局函數的計算。由於他的審局函數是採用靜態子力去計算分數,不論盤面資訊如何,其各個子力價值恆為固定,在許多情況下會產生誤判,我們希望可以藉由盤面改變而動態的改變子力價值,更客觀小心的審視盤面,並以這審局函數來實作在暗棋中關於其棋種間特殊的食物鏈關係,以期加強暗棋程式的棋力程度,並使棋力超越人類玩家水平。
  • Item
    電腦麻將程式MahJongDaXia的設計與實作
    (2016) 吳俊緯; Wu, Chun-Wei
    電腦麻將程式MahJongDaXia的設計與實作 吳俊緯 在人工智慧的電腦對局領域中,麻將是一個相當特別的項目,由於多玩家、不完全資訊及機率性三個要素使得其他項目的搜尋演算法在麻將中變得難以實現,也因為其困難與價值,使得國內外有許多優秀的人才投入這個領域。 在本論文所研發的程式MahJongDaXia,用純規則導向的架構與純機率性的審局方式達到所期望「正確的捨牌」。在文中將探討過去各電腦麻將程式的架構及應用技術,並詳述MahJongDaXia的程式結構,所採用的7個規則來做為決策函式的核心,說明這些規則對於特殊牌型的處理,關於開發過程對於使用的結構的改進原因及優劣。MahJongDaXia為一個從無到有的電腦麻將程式,開發實踐尚短,也在TAAI 2015、TCGA 2016與ICGA2016競爭中取得銀牌,未來會以程式完善為目標改進。