理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    奈米導電高分子聚苯胺複合材料—製備、特性及其應用
    (2010) 洪瑛鍈; Ying-Ying Horng
    聚苯胺由於其本身獨特的電化學與光學特性,已廣泛地應用在化學、生物檢測器、超級電容器和燃料電池等領域。近年來,一維奈米結構的導電高分子,包括奈米線、奈米棒和奈米管等,具備低維高表面積與有機導體的優勢,更有著令人期待的發展。唯其在實際的應用上,尚須更進一步地探討與研究。本論文探討奈米導電高分子聚苯胺複合材料—製備、特性及其應用,主要內容包括有葡萄糖氧化酶酵素電極的製備,繼而應用於葡萄糖的偵測;另則探討聚苯胺奈米線/碳布與聚苯胺和奈米碳管複合材料電極的製備,以及其在超級電容器的應用。 第一部份為利用電化學合成方法,直接將聚苯胺奈米線成長在碳布表層,並同時植入葡萄糖氧化酶以製備成酵素電極,繼而應用於葡萄糖濃度的偵測。碳布被選擇作為電流的收集器,乃是考慮其具備高導電性、化學穩定性及其高孔洞三維結構可提供高表面積,可提供聚苯胺奈米線更多的成長空間;另由於直接成長的聚苯胺奈米線與碳布之間,有效降低介面瑕疵因素,因而可展現優異的偵測靈敏度。本研究所製備一維聚苯胺奈米線具備高表面積特性,有利於較高濃度葡萄糖氧化酶的植入,可將葡萄糖的偵測靈敏度提高至~2.5 mAmM-1cm-2程度,相關葡萄糖濃度的偵測範圍為0-8 mM,具備可應用於人體葡萄糖濃度的偵側能力。 至於超級電容器的應用,本論文主要探討聚苯胺奈米線/碳布與聚苯胺與奈米碳管,兩種奈米聚苯胺複合材料電極。本研究所製備出的聚苯胺奈米線/碳布電極,不僅具備高單位重量電容值之外,同時也具備相當高的單位面積電容值,顯示出極佳的電容效能。根據定電流充放電分析,其單位重量電容值高達1079Fg-1 ,相關比能量與比功率則分別為100.9Whkg-1和 12.1 Wkg-1,至於其單位面積電容值可高達1.8 Fcm-2程度。然而基於聚苯胺本身的電子傳導性較差(相較於金屬導體),因此在可逆氧化還原轉變的過程中,通常會由於聚苯胺本身的內電阻效應而導致部份電子的損失,降低了電容的穩定性,致使面臨無法長時間重複循環使用的缺點。對於奈米碳管材料而言,由於具備良好的導電性和機械性質,因而奈米碳管和聚苯胺複合材料,可大幅改善電極的導電性。因此,聚苯胺與奈米碳管混合式複合材料所製備電極,不但可提升其功率密度,而且也因具備優良的械性質,有效降低因重複循環使用所造成電極結構上的破壞程度。
  • Item
    Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells
    (Elsevier, 2009-05-15) C.-H. Wang; Chia-Chun Chen; H.-C. Hsu; H.-Y. Du; C.-R. Chen; J.-Y. Hwang; L.-C. Chen; H.-C. Shih; J. Stejskal; K.-H. Chen
    Protonated polyaniline (PANI) is directly polymerized on Nafion 117 (N117), forming a composite membrane, to act as a methanol-blocking layer to reduce the methanol crossover in the direct methanol fuel cell (DMFC), which is beneficial for the DMFC operating at high methanol concentration. The PANI layer grown on the N117 with a thickness of 100 nm has an electrical conductivity of 13.2 S cm−1. The methanol permeability of the PANI/N117 membrane is reduced to 59% of that of the N117 alone, suggesting that the PANI/N117 can effectively reduce the methanol crossover in the DMFC. Comparison of membrane-electrode-assemblies (MEA) using the conventional N117 and the newly developed PANI/N117 composite shows that the PANI/N117-based MEA outputs higher power at high methanol concentration, while the output power of the N117-based MEA is reduced at high methanol concentration due to the methanol crossover. The maximum power density of the PANI/N117-based MEA at 60 °C is 70 mW cm−2 at 6 M methanol solution, which is double the N117-based MEA at the same methanol concentration. The resistance of PANI/N117 composite membrane is reduced at elevated methanol concentration, due to the hydrogen bonding between methanol and PANI pushes the polymer chains apart. It is concluded that the PANI/N117-based MEA performs well at elevated methanol concentration, which is suitable for the long-term operation of the DMFC.