理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    奈米級Rubrene/Co薄膜之結構、電性與磁性
    (2014) 楊鈞凱; Andy
    本實驗利用磁控射頻濺鍍的方式成長鈷,以及蒸鍍的方式成長紅熒烯,在單晶矽(100)上成長複合結構,再配合磁光柯爾效應儀進行磁性分析、原子力顯微鏡進行表面結構分析、還有Keithley2400進行電性量測。第一部分的實驗先探討鈷/矽基板的表面結構與鍍率,在特定條件下將鈷濺鍍在矽基板上會有三角錐的結構,再來是紅熒烯/矽基板各種溫度與厚度的表面結構與鍍率,而在不同溫度下蒸鍍紅熒烯其成長的方式大致上相同,不過蒸鍍溫度越高的情況下成長流程會在越薄的厚度就完成。第二部分是將紅熒烯(1、4 nm)蒸鍍在矽基底上,使紅熒烯成顆粒結構,藉此限制鈷的成長範圍,再將鈷濺鍍上去,在1 nm紅熒烯這組實驗中,鈷的hcp結構能從紅熒烯顆粒中露出的矽基底順利成長出來並蓋住整個表面,殘磁與飽和磁化量皆隨鈷增加而增加,由於鈷的hcp結構異向能強,因此可以保持矯頑力穩定,不隨表面粗糙度變化,而在4 nm紅熒烯這組實驗中,由於底下的紅熒烯非常緻密,以至於能從細縫中以hcp結構成長出來的鈷極少,必須濺鍍到相當厚度的鈷才能觀察到三角錐,而殘磁與飽和磁化量也隨鈷厚度增加而增加,矯頑力也是保持穩定。第三部分則是針對紅熒烯做電性量測,一共做了CPP量測、四點量測及兩點量測三種,發現因為濺鍍的鈷的動能大,因此會混入紅熒烯中,形成混合層,而我們可以利用所量測到的電阻值定出混合層中有多少的鈷及多少的紅熒烯。
  • Item
    以理論計算方式探討以下反應機構:I.Pt(111)和Ni(111)表面上的C-N鍵結合反應 II.Pt(111)表面上以CHxNO為起始物之HCN生成反應
    (2011) 陳維家
    第一部分:Pt(111)和Ni(111)表面上的C-N鍵結合反應 我們使用周期性密度泛函理論來研究Pt(111)和Ni(111)表面上的C-N鍵結合反應,這是工業上用來製成氫氰酸(HCN)的重要催化反應。這個反應包含以下幾個部分:CH4和NH3的脫氫、反應物和產物(CHx、NHy和CHxNHy;x=0-3、y=0-2)的吸附、反應分子在表面上的移動以及C-N鍵結合反應。根據我們的計算結果,反應物CHx和NHy在Pt(111)/Ni(111)表面上的吸附能為7.41/6.91、6.97/6.52、4.58/4.39、2.19/2.01 eV以及5.10/5.49、4.12/4.79、2.75/2.87 eV,符合以下規律:C > CH > CH2> CH3以及N > NH > NH2;而產物的吸附能則是在Pt(111)上CNH2最佳,在Ni(111)上NCH3最佳。在C-N鍵結合的部分,不同表面上的活化能及反應熱都不盡相同,但它們的起始物、過度狀態以及產物的吸附結構都非常相似。其中,在Pt(111)表面上, CH2+NH2有最低的活化能;而在Ni(111)表面上,則是CH+NH2有最低的活化能。我們也使用了電子態密度(LDOS)、電子局域密度函數(ELF)以及電荷分析,用以佐證我們的計算結果。 第二部分:Pt(111)表面上以CHxNO為起始物之HCN生成反應 我們使用周期性密度泛函理論來研究HCN在含氧情況下的生成反應,用以模擬HCN工業製成中的Andrussow process。我們使用NO (由O2氧化NH3產生)和CHx (由CH4脫氫產生)結合成的CHxNO (x=0-3)為起始物,研究其生成HCN的反應機構。根據我們的計算結果,CHxNO吸附在Pt(111)表面上之吸附能分別為4.11、1.91、2.04和2.12 eV。其中,從CH3NO生成HCN之最可能反應路徑為:CH3NO依序斷兩個C-H鍵形成CHNO,CHNO進一步氫化成CHNOH後再斷N-OH鍵形成最終產物HCN。此步反應之速率決定步驟為CH3NO(a)→CH2NO (a) + H(a),活化能為1.22 eV。
  • Item
    理論計算探討乙醇在2Ru/ZrO2(111)表面之脫氫反應
    (2009) 陳育偉; CHEN,YU-WEI
    本論文分為兩大主題: 第一部分:乙醇在2Ru/ZrO2(111)表面之脫氫反應 我們使用週期性的密度泛函理論來研究乙醇在2Ru/ZrO2(111)表面催化下之脫氫反應,我們計算出來乙醇有最大吸附能的結構是以乙醇的O原子接在表面的Ru原子上,而這個結構接續的反應會經由O-Ru路徑,即斷鍵的順序是:O-H鍵→βC-H鍵→C-O鍵而最後得到乙烯吸附在表面上;另外一個有第二大吸附能的結構是以乙醇的αC原子吸附在表面的Ru原子上,這個結構接續的反應會經由αC-Ru路徑,即斷鍵的順序是:αC-H鍵→O-H鍵→(βC-H鍵) →C-C鍵而最後得到氫氣。最後,我們也計算了吸附在表面上的H原子結合成氫氣的反應位能面,其所計算出來的能障大約是20-30 kcal/mol。這個結果象徵著使用參雜Ru的ZrO2表面可能是個頗為有效的催化劑來催化乙醇的脫氫反應。 第二部分:在ZrO2表面參雜Ru與否對催化乙醇脫氫反應的影響 我們使用週期性的密度泛函理論來研究乙醇在ZrO2(111)表面以及2Ru/ZrO2(111)表面催化下之脫氫反應的差別,發現在ZrO2(111)表面脫氫反應所需克服的活化能比在2Ru/ZrO2(111)表面還要高,特別是斷βC-H鍵的過程,其活化能的差距為36.05 kcal/mol,這導因於斷βC-H鍵產生的吸附物非常的不穩定。試著了解造成這個現象的原因,我們做了態密度以及變形能的分析,而分析的結果發現這導因於兩個因素:(1) 乙醇的O、C原子與2Ru/ZrO2表面的Ru原子的作用力強過與ZrO2表面的Zr原子的作用力;(2) 乙醇在ZrO2(111)表面催化下斷βC-H鍵所得到的吸附結構,其表面的變形能比起在2Ru/ZrO2(111)表面催化下的情形大很多(30.41 kcal/mol)。
  • Item
    理論計算探討在 2Ru/γ-Al2O3(110) 表面之乙醇脫氫及水氣轉移反應機構
    (2009) 廖正豪; Cheng-Hao Liao
    本篇論文我們利用週期性密度泛函數理論(DFT)的計算方法,探討在2Ru/γ-Al2O3(110)表面上對於乙醇脫氫以及水氣轉移(WGS)的反應機構。我們計算出乙醇最穩定的吸附結構是乙醇以氧端吸附於表面的Al原子上,βC端靠近表面的Ru原子,我們將此位向的乙醇脫氫路徑稱為βC path。此路徑的斷鍵順序為βC-H鍵 → C-O鍵,而其活化能為:0.109 → 1.159 eV,最後形成CH2CH2(a) + OH(a) + H(a)在表面上。第二穩定的乙醇吸附位向是以氧端吸附於表面的鋁原子上,αC端靠近表面的Ru原子,此脫氫路徑稱為αC path,此路徑最主要的斷鍵順序為αC-H鍵 → O-H鍵 →αC-H鍵 → C-C鍵 → βC-H鍵,而其活化能為:0.234 → 0.992 → 0.349 → 0.899 → 0.223 eV,最後產生CH2 (a) + CO(a) + H(a)在表面上。結果顯示理論計算與實驗上相符合。 水氣轉移反應的機制主要分為兩種:(1) carboxyl mechanism; (2) redox mechanism。在進行水氣轉移反應前我們先計算出一個一氧化碳與一個水分子在表面吸附能最佳的位置。水氣轉移反應第一步的水分子解離後不管是經由carboxyl mechanism或是redox mechanism反應都會遇到2 eV以上的能障導致反應無法繼續。於是採用將三個水分子同時吸附在表面上第一層的三個鋁原子上與一氧化碳進行水氣轉移反應。 計算三個水分子的系統後我們發現在2Ru/γ-Al2O3(110)表面上的水氣轉移反應較傾向經由redox mechanism路徑。此路徑會先進行 OH(a) → H(a) + O(a)步驟,活化能大小為1.219 eV;接下來會經由 CO(a) + O(a) → CO2(a) 產生二氧化碳,其活化能為1.497 eV。而carboxyl mechanism路徑的活化能比redox mechanism高,且中間產物也較不穩定。