理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 10 of 18
  • Item
    兩性共聚物:合成以及對水泥砂漿中氧化石墨烯分散性之影響
    (2022) 郭景隆; Guo, Jing-Long
    本篇論文的研究主要為合成出一種羧酸系兩性離子型共聚物PD (單(5-氨基-2-(1-(2-((羧甲基)二甲基氨基)乙氧基)-1-氧代丙烷-2-基)-4-甲基-5-氧代戊酸酯)二鈉),用來改善氧化石墨烯在水泥砂漿中的分散,提升試體的抗壓強度。實驗過程中使用馬來酸酐和DMEA(N,N-二甲基乙醇胺)合成DME(二甲基胺乙基氧羰基丙烯酸),然後再與氯丁酸鈉鹽反應得到單體DCA(N,N-二甲基((羧酸)丙烯醯氧基乙基)乙酸鈉),最後使用過硫酸銨為起始劑,與不同比例的丙烯醯胺(AM)經由自由基聚合反應合成得到共聚物PD,經由FTIR和1H-NMR光譜鑑定共聚物的分子結構,並以GPC/SEC測得其分子量。另外,使用modified Hummers法將石墨烯氧化成氧化石墨烯(GO)。將PD加入含GOA的人工孔隙溶液中,透過沉降體積試驗、黏度實驗、粒徑分布與界達電位的測試,探討PD對於GO在人工孔隙溶液中的分散效果。測試結果顯示, GO在人工孔隙溶液中的沉降時間隨著PD之AM/DCA比例的增加,呈現先增後減的趨勢。其中PD在AM/DCA=5時有最長的沉降時間;此外,GO在溶液中的沉降時間隨著PD分子量的上升或添加量的增加,呈現先增後減之趨勢。其中以添加10wt% PD15b時,GO在溶液中的沉降時間為最長,達到45小時,此時溶液的黏度為最低(3.08 mPa‧s),溶液中GO的D50粒徑為最小、界達電位之負值為最大,分別為127 nm和-25.5 mV,亦即在所合成的共聚物中以PD15b(AM/DCA=5, M̅n=1.8×104)對於氧化石墨烯在孔隙溶液中有最好的分散效果。將PD15b加入含GOA的水泥砂漿中,進行抗壓強度測試,發現添加10wt% PD15b與0.05wt% GOA的砂漿試體,在28天的抗壓強度為34.6 MPa,與未添加GOA、共聚物的控制組相比提升了52.4%。
  • Item
    羧酸型共聚物:合成與對於砂漿中氧化石墨烯分散性的影響
    (2021) 許永; HSU, Yung
    本篇研究目標是合成一種羧酸系兩性離子型共聚物PDA(聚(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉-丙烯醯胺),作為共聚物用來改善氧化石墨烯在水泥基材料的分散性以提升試體的機械性質。先使用馬來酸酐和N,N-二甲基胺乙醇合成DME(二甲基胺乙基氧羰基丙烯酸),再與4-氯丁酸反應得到單體DCB(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉),最後使用過硫酸銨(APS)為起始劑,與不同比例丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物PDA,PDA經由FTIR和1H-NMR光譜鑑定其結構,以GPC測定其分子量。另外,使用Hummers法將石墨烯氧化成氧化石墨烯(GO)。將PDA加入含氧化石墨烯的水溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗測試,探討PDA對於水溶液中GO的分散效果。測試結果顯示,在人工孔隙溶液中共聚物對於GO的沉降時間隨著AM/DCB比例的增加呈現先增後減的趨勢,PDA在AM/DCB=4時有最長的沉降時間;另外,GO的沉降時間隨著PDA分子量的上升或添加量的增加而增長,因此PDA41添加量為20 wt%時,GO的沉降時間為最長達65小時,此時溶液的黏度為最低(2.88 mPa‧s),溶液中GO的D50粒徑為最小、負界達電位為最大,分別為287 nm和-28.2 mV。因此在所合成的共聚物中PDA41有最好的分散效果。將PDA41加入含氧化石墨烯的水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度。結果顯示,添加20 wt%的PDA41與0.05 wt%的GO的水泥砂漿試體,在28天的抗壓強度為34.7 MPa,抗彎強度為6.73 MPa,與未添加共聚物的控制組相比提升了57%與99%。
  • Item
    矽灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究
    (2020) 林士傑; Lin, SHIH-CHIEH
    本論文主要目的為製備一種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽灰為單體,合成 SF/PCA,使用FT-IR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽灰含量對於水膠在各種水溶液下吸水率的影響。 將SF/PCA水膠加到混凝土和水泥砂漿中,作為自養護劑時,探討單體比例和矽灰比例含量,對於水泥漿中對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。 實驗結果顯示, SF/PCA水膠,當AM/CDP= 4, APS= 0.7 mole%, MBA= 0.5 mole%, SF = 10 wt%時,在去離子水中、Pore solution和水泥漿濾液中的最大吸水率分別為480.3 g/g、130.3 g/g、81.3 g/g。 將SF/PCA水膠加入水泥砂漿和混凝土中,當水膠劑量為0.2 wt% 和矽灰含量為10 wt%時,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有較佳的提升效果。
  • Item
    飛灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究
    (2020) 蔡承育; Cai, Cheng-Yu
    近年來,學者們提出使用吸水性材料作為自養護劑添加到混凝土中可以有效的改善混凝土的性質,因此本論文主要目的為製備一種飛灰/兩性離子型複合水膠(FA/PDA)作為混凝土的自養護劑,水膠使用丙烯醯胺(AM)、N,N-二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA)和飛灰(FA)合成,合成後使用FT-IR光譜作結構鑑定和探討單體比例、起始劑劑量、交聯劑劑量、飛灰含量對於水膠在各種水溶液下吸水率的影響。 將FA/PDA水膠加到水泥砂漿和混凝土中,作為自養護劑時,探討水膠添加量及水膠內飛灰比例的含量,對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。 將FA/PDA水膠置於水溶液中,在吸水率在一開始會先快速的上升,然後趨於平穩後即達到飽和吸水率,實驗結果顯示,FA/PDA水膠,吸水率會隨AM比例、交聯劑劑量、起始劑劑量和飛灰含量增加而增加,當AM/DCA= 3 MBA= 0.3 mole%, APS= 0.5 mole%,FA = 15 wt%有最高的吸水率。 FA/PDA水膠在去離子水中、0.1M NaCl(aq)、0.1MCaCl2(aq)、Pore solution和水泥漿濾液中的最高的吸水率分別為398.07g/g 、129.63 g/g、116.5 g/g、116.38g/g、73.44 g/g。 將FA/PDA水膠加入水泥砂漿和混凝土中,抗壓強度隨著水膠量的添加而上升,當水膠劑量為0.2 wt%時有最高的強度,在添加不同種類的FA/PDA水膠發現,飛灰含量為15 wt%的FA/PDA水膠,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有最好的提升效果。
  • Item
    兩性離子共聚物的合成以及作為混凝土化學摻料的可行性評估
    (2005) 江福泰
    強塑劑對高性能混凝土工作性有相當大的影響。本研究合成二種共聚物PDA和PAMD作為混凝土的分散劑。首先利用馬來酸酐和N,N-二甲基-1,3-丙二胺合成CDPA,再和氯醋酸鈉反應得到DAE,再和丙烯醯胺依不同比例行自由基聚合得到PDA。接著由2-丙烯醯胺-2-甲基丙烷磺酸( AMPSA )、甲基丙烯酸( MAA )與改質單體DAE依不同比例行自由基聚合得到PAMD。以FT-IR與1H-NMR鑑定合成之DAE、PDA和PAMD結構;利用GPC測定共聚物的分子量,電位滴定儀測定共聚物中單體比例。 探討PDA、PAMD的單體比例、分子量對水泥漿的流動性與混凝土的工作性的影響,結果並與商用之磺酸系HPC-1000及羧酸系HP 100進行比較。研究結果顯示, 添加PDA( DAE :AAM = 1 : 5, Mw= 5.3 × 104 )的水泥漿體具有最佳之初始迷你坍度與坍度維持性,飽和劑量為0.8wt%。添加PAMD( AMPSA : MAA : DAE = 3 : 5 : 1, Mw= 4.9 × 104 )的水泥漿體具有最佳之初始迷你坍度與坍度維持性,飽和劑量為0.2%。
  • Item
    高分子對鈦酸鋇分散性能與電性之研究
    (2008) 陳龍賓
    鈦酸鋇因具有強鐵電、壓電和介電等特性,為製造電容器、電感器、壓電感測器之重要原料。製程上鈦酸鋇粉末須先加入溶劑以配成漿料,目前所使用的溶劑分為水及有機溶劑兩類,基於環保與降低成本,近年來水系漿料的製備已引起矚目。為製備分散良好之漿體,常需加入聚電解質作為分散劑。隨著漿體pH值增加,高分子吸附量減少,但降低漿體pH值,高分子解離度降低、鋇離子溶出量增加。為了製備分散穩定的漿料,值得合成出具有良好分散效能且減少鋇離子溶出的高分子。 本研究主要合成兩種類水溶性高分子:一為陰離子型之聚(甲基丙烯醯胺/甲基丙烯酸鹽) (PMMN),係以甲基丙烯醯胺 (MAM) 及甲基丙烯酸 (MAN) 為單體,在鹼性環境下經自由基聚合反應所合成的共聚物。另一為兩性共聚物,先以氯醋酸鈉與N-(4-乙烯苯基)-N,N-二甲基胺製備一N-(4-乙烯苯基)-N,N-二甲基乙酸銨(DMVBAE)之兩性單體。以DMVBAE和甲基丙烯酸經聚合反應得到聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯酸鹽) (PVM);另外,DMVBAE與甲基丙烯醯胺、甲基丙烯酸可製得聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯醯胺/甲基丙烯酸鹽) (PVMM)。所得產物由IR、1H-NMR光譜確認其結構,GPC分析其分子量。利用電位滴定法得到高分子在不同pH值下的解離率及PMMN中單體組成比例。由PVM的1H-NMR光譜圖可知兩單體含量,而PVMM可經由元素分析法求得單體組成。 兩類型高分子添加於鈦酸鋇漿體,藉量測漿體黏度、記錄沈降行為、分析漿體粒徑、觀察生胚微結構及計算胚體密度來評估其分散效能並與PMAAN做為對照。結果顯示添加這些高分子可得到分散良好的漿體,最佳劑量均為2mg/g BT。由吸附實驗和粒子界達電位測定結果顯示PMMN(60)含60wt%甲基丙烯醯胺單體有最大的羧基吸附量及最低的界達電位值。PVM、PVMM為兩性高分子,在鹼性環境下較易吸附於粒子表面,其中PVMM含醯胺基更易吸附於粒子,吸附量大於PVM。這些高分子吸附於粒子上均可產生電荷斥力與立體阻障而使懸浮液達到穩定的狀態。引用DLVO理論計算粒子之總電位能,所得結果與實驗相符。IR、UV/vis光譜圖中官能基吸收峰的位移提供粒子與高分子交互作用的證據。量測溶液中鋇離子濃度, PMMN、PVM和PVMM結構中含四級胺和醯胺基等官能基較容易吸附於粒子上,吸附量增加或粒子表面有較大的高分子覆蓋率,可抑制鋇離子溶出,因此減少溶液中鋇離子濃度。添加PMMN、PVM及PVMM做為分散劑可得到較好的分散效果,粒子堆積緻密,經燒結後,可增加胚體介電常數值與降低介電損失值。
  • Item
    利用鈀金屬進行含氮及含氧烯炔化物的串級環化反應
    (2010) 鄭淑瑾
    在天然物與藥物中有很多以吲哚(indole)及苯并呋喃(benzofuran)為主要結構,從合成觀點看來,得到含此結構的多環結構,將是重要的研究方向。本文主旨在探討利用鈀(II)金屬催化含炔基之苯胺衍生物,進行分子內串級環化反應,合成含氮雜環化合物。 4-戊炔-1-醇以2-碘酰基苯甲酸(IBX, 2-iodoxybenzoic acid)氧化劑氧化得到4-戊炔-1-醛化物後,和2-乙氧-2-側氧乙基三苯基溴化膦((2-ethoxy-2-oxoethyl)triphenylphosphonium bromide)進行Witting反應得到 (E)-2-烯-6-炔庚酸乙酯,再與2-碘苯胺進行Sonogashira反應得到(E)-2-(2-烯-6-炔庚酸乙酯)苯胺,然後和4-甲基苯磺醯氯(p-TsCl)反應,得到(E)-7-N-甲苯磺醯基-2-烯-6-炔庚酸乙酯化物。將含烯炔之苯胺衍生物利用PdCl2(PhCN)2當催化劑,進行分子內串級環化反應得到帶三環之化合物,進一步以X-ray繞射分析證明此環化產物。
  • Item
    一. 含氮雜環螺旋化合物之合成反應 二. 3,4-雙取代環戊烷衍生物之合成
    (2010) 施雅芳
    本論文共分成兩個部分: 第一部份: 利用1,3-環己二酮化合物進行碘置換,得到3-碘環己-2-烯酮,接著以鋅銅試劑製備出C-3帶腈基及酯基的環己烯酮衍生物。腈基環己烯酮化合物以氫化鋁鋰同時將羰基及腈基環原成羥基及一級胺類,接著在鹼性條件下加入4-甲基苯磺醯基氯得到環己烯醇之磺醯胺化合物。最後以間氯過氧苯甲酸(mCPBA)在室溫下反應,得到含3個立體中心之含氮螺旋化合物。 酯基環己烯酮化合物以硼氫化鈉還原羰基、甲基胺將酯基取代成醯胺得到側鏈含醯胺之環型烯醇化合物。在相同條件下反應,可以成功合成內醯胺螺旋化合物。 第二部分: 根據文獻,利用簡單及快速的化學反應合成含雙酯基及含氧原子之順式烯炔醇芳香族化合物。 嘗試利用Ph3PAuCl/AgOTf共催化下,加入二甲基丙二酸之順式烯炔醇芳香族化合物進行進行分子內克萊森類型重排反應,可以得到一組含雙酯基的3,4-雙取代環戊烷非鏡像異構物。相同條件下加入含氧原子之烯炔醇芳香族化合物則無法進行相同反應途徑得到呋喃衍生物。
  • Item
    奈米銀的製備和其在抗菌纖維上的應用
    (2009) 杜孟達; Meng-Da Du
    本篇論文主要為合成一種水溶性共聚物PAD,可同時做為銀粒子的保護劑和布料的親水劑,PAD是由丙烯醯胺和DAPA為反應物在適當條件下反應所得之產物。研究過程中改變PAD/AgNO3比例、pH值,以UV-VIS光譜圖探討PAD對形成的奈米銀粒子的分散性影響,結果顯示在pH值接近11時進行還原可得分散較好的銀粒子;而由TEM圖得知當PAD/AgNO3比例約為1時比濃度比為1.67, 5時,PAD有較佳的銀粒子保護效果。將Nylon布料經浸泡於不同pH值的PAD/Ag溶液一段時間後,在pH值約為10.5時有99%的抗菌效果,但抗菌率經15次以上的清洗後僅剩56%,有明顯降低的現象;若Nylon布料先經由商用親水劑SPP處理,再經浸泡PAD/Ag溶液後可得穩定的殺菌效果。將聚酯(PET)、Nylon等疏水性布料浸泡於PAD、還原劑和AgNO3溶液中,PAD可作為布料的親水劑,使銀離子和還原後的奈米銀粒子能有效分散在布料結構中,即使布料經過20次的清洗,奈米銀粒子仍可附著於布料上,使有加入PAD處理的PET布料其抗菌率明顯優於未加入PAD的PET改質布料;而在銀離子濃度小於0.5mM時,PAD對Nylon布料提升抗菌率的影響才會顯現出來。在未加入PAD的情況下以高溫法改質布料時,Spandex中的PU成份有助於銀粒子的形成,所以使Nylon91在抗菌能力上優於Nylon100,此外,可由UV-visible光譜圖發現每次高溫法所消耗的銀離子莫耳數少,所以銀離子溶液可重覆使用,減少銀原料的浪費;而加入PAD時,PAD則明顯提升銀粒子的生成,所以改質後的Nylon布料皆有穩定的抗菌效果。
  • Item
    兩性水膠的合成以及對水泥砂漿保水性質的影響
    (2008) 莊景翔
    本研究主要合成一種兩性的水膠PDCA,先利用馬來酸酐和N,N-二甲基胺乙醇合成二甲基胺乙基氧羰基丙烯(DME),再和氯醋酸鈉反應得到單體N,N—二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA),最後和丙烯醯胺聚合反應合成PDCA水膠。以FT-IR,1H-NMR光譜確認DME和DCA結構。探討PDCA的單體比例、起始劑劑量以及交聯劑劑量對在純水和鹽水中吸水率之影響,結果顯示PDCA的吸水率會單體DCA比例先增加而上升,隨後則下降;起始劑劑量增加會使PDCA之吸水率下降;交聯劑劑量增加會使PDCA的吸水率先增後減。以及與PAA、P(AA/AM)水膠比較在純水和鹽水中之吸水率。 結果顯示PDCA最佳反應條件為DCA:AM = 4:6;APS = 0.2 mol%;MBA = 0.5 mol%,所製得之PDCA在純水中的吸水率可達316.5 g/g;在0.1M NaCl、0.1M CaCl2的吸水率分別為26.7 g/g、13.6 g/g。 研究添加PDCA對於水泥砂漿之重量損失、保水率、相對濕度和抗壓強度的影響,結果顯示添加1.0%的PDCA量對於水泥砂漿為最佳添加量,試體之保水率、相對濕度都有增加,重量損失減少;抗壓強度則是下降。另外,使用DSC測量水泥漿的水化程度,結果顯示隨著PDCA劑量增加而水化程度增加。