理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan
    (American Geophysical Union (AGU), 2013-09-01) Hsin Y.-C.; B. Qiu; T.-L. Chiang; C.-R. Wu
    Seasonal and interannual changes of surface Kuroshio intensity and central position east of Taiwan during 1993–2012 are investigated by quantitatively analyzing the satellite altimetry product. The Kuroshio moves inshore (offshore) off northeast of Taiwan in winter (summer), whereas it has an offshore (inshore) path off southeast of Taiwan in winter (summer). The seasonal change of heat flux over the East China Sea shelf is found to cause the seasonality of the Kuroshio central position off northeast of Taiwan, whereas the seasonal Kuroshio movement off southeast of Taiwan is found to be induced by the combined effect of the Kuroshio changes through the Luzon Strait and the eastern Luzon Island. In contrast to this y-dependent path changes, the Kuroshio becomes weaker (stronger) as a whole east of Taiwan in winter (summer). On the interannual time scales, the Kuroshio throughout the eastern coast of Taiwan intensifies and has a concurrent offshore path during the periods of 1995–1997 and 2004–2007. The relative intensity of cyclonic eddies to anticyclonic eddies off eastern Taiwan are found to contribute to these interannual Kuroshio changes.
  • Item
    Mindanao Current/Undercurrent in an Eddy-Resolving GCM
    (American Geophysical Union (AGU), 2012-06-01) Qu T.; T.-L. Chiang; C.-R. Wu; P. Dutrieux; D. Hu
    Analysis of results from an eddy-resolving general circulation model showed two subsurface velocity cores in the mean within the depth range between 400 and 1000 m below the Mindanao Current (MC). One is confined to the inshore edge at about 126.8°E and connected with the Sulawesi Sea. The other takes place somewhat offshore around 127.7°E, being closely related to the intrusion of South Pacific water. Both cores are referred to as the Mindanao Undercurrent (MUC). The MC/MUC is approximately a geostrophic flow, except on the inshore edge of the MUC where up to 50% of the mean flow can be explained by ageostrophic dynamics. In contrast with the well-defined southward flowing MC, the MUC is of high velocity variance relative to the mean. Empirical orthogonal function (EOF) analysis shows that approximately 60% of the total velocity variance is associated with two meandering modes, with their major signatures in the subthermocline. The dominant time scale of variability is 50–100 days. An ensemble of these meso-scale fluctuations provides a northward freshwater flux on the offshore edge of the Philippine coast, which to a certain extent explains why water of South Pacific origin appears to extend farther northward than the mean MUC. In the offshore velocity core of the MUC, for example, eddy induced freshwater flux is equivalent to a mean flow of about 0.3 m s−1 in the density range between 26.9 and 27.3 kg m−3, which is greater than the mean current by a factor of 6.
  • Item
    Fluctuations of the thermal fronts off northeast Taiwan.
    (American Geophysical Union (AGU), 2011-10-01) Hsin, Y.-C.; T.-L. Chiang; C.-R. Wu
    A high-resolution sea surface temperature (SST) data derived from several satellites is used to investigate the variability of the thermal front off northeastern Taiwan. Hidden by a dominant annual cycle, the SST data cannot reveal the thermal front fluctuation in the form of Hovm闤ler diagram. An innovative methodology has been applied to the SST satellite imagery to derive the SST Standardized Index (SSTSI), capable of revealing the frontal variability with multiple time scales. Principal component analysis shows that the SSTSI variation consists mainly of two modes. Mode 1 represents a strong annual cycle related to the seasonal reversal of the monsoonal winds. The temperature gradient is enhanced in winter and a cold dome is observed off northern Taiwan in summer. Mode 2 is highly correlated with the upstream Kuroshio variability. The shoreward (seaward) migration of the thermal front takes place when the Kuroshio transport weakens (strengthens). The results are consistent with transports estimated by tidal gauge measurements, satellite altimeter-based sea level anomaly, and surface flow patterns derived from high-frequency radars. Mode 2 is coherent with the Kuroshio transport through the East Taiwan Channel at periods of 120 and 45 d with a time lag of 40 and 11 d, respectively. This 120 d fluctuation is due to the interaction between westward-propagating eddies and the Kuroshio east of Taiwan, while the 45 d signal arises from the Kuroshio's self-instability. The interannual variations of the SST pattern in winter and summer are also discussed.
  • Item
    Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring
    (American Geophysical Union (AGU), 2010-08-01) Lin, I-I; C.-C. Lien; C.-R. Wu; G. T. F. Wong; C.-W. Huang; T.-L. Chiang
    In May 2003, a phytoplankton bloom of chlorophyll-a (Chl-a) concentration of 0.3–0.4 mgm−3 was observed at the centre of northern South China Sea (SCS) by NASA's Sea-viewing Wide Field-of-View sensor. As this region is remote and known to be oligotrophic in spring (Chl-a concentration typically at ∼0.05–0.08 mgm−3), it is intriguing to explore this unusual happening. Based on six different remote sensing data and numerical modelling, the results suggest that the injection of an ocean eddy is the most likely cause of the bloom. Due to long-range transport of a large (700 × 500 km) anti-cyclonic ocean eddy, coastal nutrients and plankton could be brought across hundreds of kilometres to the centre of northern SCS and impact the biogeochemistry. The open ocean part of the northern SCS basin has long been considered generally free from coastal influences. This work provides new evidence that proves otherwise. Moreover, from the perspective of physical oceanography, it is interesting to observe that, outside the monsoon seasons, there can be well-defined anti-cyclonic ocean circulation existing in the SCS without the prevailing monsoonal wind.
  • Item
    Mesoscale eddies in the northern South China Sea
    (ELSEVIER, 2007-07-01) Wu, C.-R.; T.-L. Chiang
    A fine-grid resolution model with realistic bathymetry and forcing has been developed to study the characteristics of the mesoscale eddies for the northern South China Sea (SCS). The SCS model derives its open-boundary conditions from a larger-scale model, which minimizes errors related to the uncertainty of the Kuroshio intrusion at the open boundaries. The model results are consistent with previous observations. Model sea-surface height anomaly demonstrates that the hydrography and circulation in the northern SCS are modulated by westward-propagating mesoscale eddies originating in the vicinity of the Luzon Strait. This explains the observed intra-seasonal fluctuations at the SouthEast Asian Time-series Study (SEATS) station. The mesoscale eddies have the same propagation speed as baroclinic Rossby waves (∼0.1 ms−1). The periods of eddy shedding estimated from Strouhal number are around 40–50 days in December and 80–120 days in August, respectively. The seasonal variability of the Kuroshio intrusion results in more eddies in winter than in summer.