理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    以類別感知之多任務學習框架增進序列推薦效果
    (2021) 賴薇; Lai, Wei
    序列推薦系統的目的是根據使用者以往與項目互動的序列資訊,預測使用者可能感興趣的下個互動項目主動進行推薦。本論文提出可套用於 GRU/bi- GRU/Caser 類神經網路模型的類別感知之多任務學習框架,利用項目的類別特徵做為項目的上層資訊,輔助模型預測使用者未互動過的下個項目預測任務。此框架以同時學習預測下個互動類別及下個互動項目為目標,在項目模組中將項目互 動序列經過類神經網路學習到項目層級行為表示法,再融合類別模組所學習到的類別層級行為表示法預測使用者下個互動項目。本論文所提出的方法,分別在 Foursquare 及 MovieLens 兩種不同序列強度的資料集上進行實驗,預測命中率的評估結果顯示:本論文提出的類別感知多任務學習框架在預測使用者下個未互動過的項目,相較只以單任務類神經網路模型的效能,在 Foursquare 資料集 Hit@10 最高可提升10.73%;MovieLens 資料集 Hit@10最高可提升7.29%。