理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    以全像圖為基礎之資料增量法則於深度學習應用之研究
    (2018) 郭勝傑; Kuo, Sheng-Chieh
    在進行深度學習訓練時,一般是需要大量的資料以確保訓練(training)模型時不會產生過度擬合(over-fitting)的現象,然而對於個人開發者或普通公司在資料收集上要能夠取得完整的資料是相當困難的。本論文在深度學習上提出一個採用全像圖(holographical image)來進行資料增量的法則,由於全像圖除了可以記錄及顯示3D資訊的特性,還可產生具有不同視角的2D影像,可讓用來訓練的資料量擴展,與一般只能夠改變影像的方向和色彩的方法相比,還多增加了不同視角的影像資訊,使得可有效的避免過度擬合的現象與提高辨識的準確性。 由實驗的結果可見得,本論文所提出之資料增量法則的辨識率,是優於未進行資料增量和進行傳統資料增量的結果,同時也顯示出了本論文所提出之資料增量確實可以有效的解決Overfitting的現象,另外,本論文是採用骰子辨識做為實驗時的資料增量的例子,而類似的資料增量方式可使用在不同的應用中。綜合上述,本論文所提出以全像圖為主的資料增量法則在深度學習上會有廣泛的應用。