理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    使用詞向量表示與概念資訊於中文大詞彙連續語音辨識之語言模型調適
    (2015) 陳思澄; Chen, Ssu-Cheng
    近年來深度學習(Deep Learning)激起一股研究熱潮;隨著深度學習的發展而有分散式表示法(Distributed Representation)的產生。此種表示方式不僅能以較低維度的向量表示詞彙,還能藉由向量間的運算,找出任兩詞彙之間的語意關係。本論文以此為發想,提出將分散式表示法,或更具體來說是詞向量表示(Word Representation),應用於語音辨識的語言模型中使用。首先,在語音辨識的過程中,對於動態產生之歷史詞序列與候選詞改以詞向量表示的方式來建立其對應的語言模型,希望透過此種表示方式而能獲取到更多詞彙間的語意資訊。其次,我們針對新近被提出的概念語言模型(Concept Language Model)加以改進;嘗試在調適語料中以句子的層次做模型訓練資料選取之依據,去掉多餘且不相關的資訊,使得經由調適語料中訓練出的概念類別更為具代表性,而能幫助動態語言模型調適。另一方面,在語音辨識過程中,會選擇相關的概念類別來動態組成概念語言模型,而此是透過詞向量表示的方式來估算,其中詞向量表示是由連續型模型(Continue Bag-of-Words Model)或是跳躍式模型(Skip-gram Model)生成,希望藉由詞向量表示記錄每一個概念類別內詞彙彼此間的語意關係。最後,我們嘗試將上述兩種語言模型調適方法做結合。本論文是基於公視電視新聞語料庫來進行大詞彙連續語音辨識(Large Vocabulary Continuous Speech Recognition, LVCSR)實驗,實驗結果顯示本論文所提出的語言模型調適方法相較於當今最好方法有較佳的效用。