理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    調變頻譜分解之改良於強健性語音辨識
    (2015) 張庭豪; Chang, Ting-Hao
    自動語音辨識(Automatic Speech Recognition, ASR)系統常因環境變異而導致效能嚴重地受影響;所以長久以來語音強健(Robustness)技術的發展是一個極為重要且熱門的研究領域。本論文旨在探究語音強健性技術,希望能透過有效的語音特徵調變頻譜處理來求取較具強健性的語音特徵。為此,我們使用非負矩陣分解(Nonnegative Matrix Factorization, NMF)以及一些改進方法來分解調變頻譜強度成分,以獲得較具強健性的語音特徵。本論文有下列幾項貢獻。首先,結合稀疏性的概念,期望能夠求取到具調變頻譜局部性的資訊以及重疊較少的NMF基底向量表示。其次,基於局部不變性的概念,希望發音內容相似的語句之調變頻譜強度成分,在NMF空間有越相近的向量表示以維持語句間的關連程度。再者,在測試階段經由正規化NMF之編碼向量,更進一步提升語音特徵之強健性。最後,我們也結合上述NMF的改進方法。本論文的所有實驗皆於國際通用的Aurora-2連續數字資料庫進行;實驗結果顯示相較於僅使用梅爾倒頻譜特徵之基礎實驗,我們所提出的改進方法皆能顯著地降低語音辨識錯誤率。此外,也嘗試將我們所提出的改進方法與一些知名的特徵強健技術做比較和結合,以驗證這些改進方法之實用性。實驗平台使用HTK與KALDI兩種語音辨識系統。前者用來實驗上述所提出NMF改良之效能;後者用來實驗類神經網路(Neural Network)技術於語音辨識之聲學模型的效能,並探討調變頻譜正規化法與其結合之效果。