理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Contrasting the flow patterns in the equatorial Pacific between two types of El Ni隳.
    (Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2012-11-01) Wang, L.-C.; C.-R. Wu
    Outputs based on the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) are adopted to contrast the current variations in the equatorial Pacific between two types of El Niño. The model fully resolves the equatorial currents. We found that the central Pacific El Niño (CP-El Niño) corresponds well with previous El Niño studies in that both the eastward Equatorial Undercurrent (EUC) and westward South Equatorial Current (SEC) weaken. On the other hand, the eastern Pacific El Niño (EP-El Niño) displays a distinct circulation pattern. The North Equatorial Countercurrent (NECC) strengthens in the developing phase and persists into the peak of the warm event, whereas the northern branch of the SEC (SECn) also intensifies during the mature phase and lasts for about six months. The South Equatorial Countercurrent (SECC) strengthens during the decaying phase of the EP-El Niño. The shifting of the wind stress curl associated with the thermocline variability is chiefly responsible for the unique current performance of the EP-El Niño. It is worth noting that the air–sea interaction plays an important role in the current variability not only during a CP-El Niño but also during an EP-El Niño. RÉSUMÉ [Traduit par la rédaction] Nous adoptons les sorties basées sur le système GODAS (Global Ocean Data Assimilation System) des NCEP (National Centers for Environmental Prediction) pour mettre en évidence les variations de courant dans le Pacifique équatorial entre les deux types d'El Niño. Le modèle représente complètement les courants équatoriaux. Nous trouvons que l'El Niño du centre du Pacifique (CP-El Niño) correspond bien aux études précédentes sur l'El Niño puisque le sous-courant équatorial (EUC) vers l'est et le courant sud-équatorial (SEC) vers l'ouest faiblissent. D'autre part, l'El Niño de l'est du Pacifique (EP- El Niño) affiche une configuration de circulation distincte. Le contre-courant nord-équatorial (NECC) se renforce dans la phase de développement et persiste jusqu'au maximum du réchauffement, tandis que la branche nord du SEC (SECn) s'intensifie aussi durant la phase de maturité et persiste pendant environ six mois. Le contre-courant sud-équatorial se renforce durant la phase de dissipation de l'EP-El Niño. Le changement du rotationnel de la tension du vent lié à la variabilité thermocline est principalement responsable du comportement particulier du courant de l'EP-El Niño. Il est à remarquer que l'interaction air–mer joue un rôle important dans la variabilité du courant, non seulement durant un CP-El Niño mais aussi durant un EP-El Niño.
  • Item
    Bimodal Behavior of the Seasonal Upwelling off the northeastern coast of Taiwan
    (American Geophysical Union (AGU), 2009-03-01) Chang Y.-L.; C.-R. Wu; L.-Y. Oey
    Observations over the outer shelf and shelf break off the northeastern coast of Taiwan indicate a curious seasonal variability of upwelling. At deeper levels 100 m below the surface, upwelling is most intense in summer but weaker in winter. Nearer the surface at approximately 30 m below the surface, the opposite is true and the upwelling is stronger in winter than in summer. Results from a high-resolution numerical model together with observations and simple Ekman models are used to explain the phenomenon. It is shown that the upwelling at deeper levels (∼100 m) is primarily induced by offshore (summer) and onshore (winter) migrations of the Kuroshio, while monsoonal change in the wind stress curl, positive in winter and negative in summer, is responsible for the reversal in the seasonal variation of the upwelling near the surface (∼30 m). This mechanism reconciles previous upwelling data.