理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    氣候變遷推估的統計降尺度研究
    (2010) 林士堯
    由於氣候異常現象發生的頻率逐年增加,氣候變遷在近年來成為全球熱門的議題之一。GCMs模式是現今用來客觀分析未來氣候變遷和季節預報的主要工具,並以物理的方程為基礎建立長時間全球氣候系統的模擬,但是在網格解析度太粗的情況下,對中小尺度的研究上有一定的困難,因此為了克服GCMs在模擬區域氣候上的不足,降尺度方法的運用就成為研究區域氣候的必要手段。 本研究主要採用的模式資料為IPCC AR4的二十二個模式資料在20c3m和A1B排放情境與控制情境三種,觀測資料則分別使用Aphrodite的降雨以及CRU的地表溫度,在對歷史氣候進行降尺度方法評估時的時間長度取1961年到2000年共40年;未來推估的應用上,時間長度則取2001年到2099年共99年,水平解析度均內插處理為2˚X2˚。針對陸地上的降雨以及地表溫度進行分析,利用歷史的模式和觀測資料評估統計降尺度方法的成效,再延伸應用到未來A1B情境,探討東亞地區(60˚E~150˚E,0˚N~55˚N)和台灣地區(118˚E~124˚E,19˚N~27˚N)在未來二十年(2080年到2099年)降雨和溫度與過去二十年(1980年到1999年)相比,受到氣候變遷的影響程度以及不確定性的範圍。 在評估歷史氣候的降尺度模擬效用時,可以得知氣候模式對於大尺度的氣候特徵以及變化趨勢能夠有效的掌握到,但是縮小範圍至局部地區,空間上的分布變化卻明顯的模擬能力不足,無法為區域研究提供充分且有效的資訊,而降尺度方法能夠提升空間解析度提供更多資訊、有效修正模式模擬的誤差、呈現局部地區受海陸地形分布的影響以及從環流模式擷取模式中有用的資訊等。因此對於東亞局部區域的台灣而言,降尺度方法在研究上就佔有相當重要的角色。 在檢驗的部分,從統計上透過Monte Carlo和T-test等方法對資料進行物差以及不確定性的驗證,使用Monte Carlo檢定的目的在於濾除因降尺度方法所產生的誤差,並保留通過90%信賴水準的氣候變化量;使用T-test檢定的目的在於濾除模式內包含的自然變動所產生的非氣候變遷訊號,並保留通過95%雙尾檢定(T=1.9935)的網格位置。 從研究結果顯示,東亞地區的降雨變化趨勢整體是呈現增加的情況,而且冬季增加的幅度大於年平均大於夏季,但也有部分地區出現減少的訊號,例如夏季的中亞地區和冬季的低緯度地區,顯示降雨隨空間變化的差異大。在經過檢定之後,降雨增加的幅度都有所提升,通過檢定的變化趨勢也相對較為集中;在地表溫度上整體都是增溫的趨勢,而且增溫的幅度有隨緯度遞增的情形,年平均增溫大於冬季大於夏季。在檢定前後的模式數量的差異不大,代表溫度的變化都是具有統計顯著性與高可信度。 若有更好的誤差修正方法與解析度更高的觀測資料,配合適當的統計檢定方式,就能更進一步改善降尺度方法對未來氣候的評估結果。
  • Item
    雙界面活性劑系統之金奈米棒的合成與金奈米棒之表面修飾以及再生長銀
    (2018) 林士堯; Lin, Shih-Yao
    使用雙界面活性劑系統合成出不同大小以及長寬比的金奈米棒,探討每個條件對於尺寸的影響,尺寸對於金奈米棒的表面電漿共振現象有何種影響及表面修飾過後的奈米金棒在光譜及電子顯微鏡下會如何改變,並對其表面做官能基修飾或者在表面上沉積銀原子形成金-銀雙金屬結構。由於金奈米棒的各向異性導致其具有不均勻的電磁場強度分佈,金奈米棒的兩端對於訊號(如螢光、拉曼散射光)有明顯增強的效果,因此在兩端接上具有螢光放光的金奈米團簇預期會使螢光強度增強。實驗中,表面的官能基修飾選擇使用含有硫醇基的聚合物,方便之後修飾在金奈米棒的表面,聚合反應則是以N-羧酸酐聚合法,合成出直鏈聚合物。聚合物之末端帶有氨基,能透過EDC/NHS與帶有羧酸的分子進行交聯反應,使其固定在聚合物的末端,達到固定在金奈米棒表面的目的。表面修飾後的金奈米棒可選擇性的在兩端接上物質,探討兩端強電磁場對於物質的螢光訊號影響。此外,在金奈米棒上沉積銀原子形成金-銀雙金屬結構(Au/Ag-Core/Shell) (Au@Ag nanocuboids),探討其在光譜上的變化,之後透過Galvanic Replacement reaction使用CTAC-Au(III)溶液將銀殼表面部分置換成金殼,形成具有空腔之金棒-金殼結構(gold nanorattles),這樣的結構在空腔內也具有很強的電磁場分佈,期望能在空腔的部分載入螢光物質,預測會有更高的訊號增強。