資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    應用於MTCNN及關係類神經網路之快速人臉辨識系統
    (2021) 黃奕鈞; Huang, Yi-Chun
    人臉辨識是經由擷取人臉影像,分析其臉部特徵來進行身分認證的一種技術,近年來基於深度學習運用於人臉辨識逐漸成為主流的研究方向,藉由輸入大量影像資料,解析其向素值排列之向量資訊,學習人臉特徵,最終達到可以識別人臉的目的。使用MTCNN作為人臉檢測的部分,雖然其能夠穩定且精準地框選人臉,但是因為需要花費較大計算量,所以導致在檢測上的速度較為緩慢,進而使得整體系統效能受到影響。而在人臉識別的部分使用關係類神經網路架構,並且以一人一個模型的方式來增減辨識人數,雖然能夠對於每個人都能達到最佳的辨識度,但會在可辨識人數多的情況下,造成辨識效率降低的現象。本論文旨在針對人臉檢測以及人臉識別的部分做改進, MTCNN方面透過改進現有架構的方式,使得人臉檢測速度加快。而在人臉識別方面使用了演算法改變模型搜尋的方式,使得在辨識人數多的狀況下,也能夠具有流暢的辨識速度,最終整合這兩部分來獲得執行效率高之人臉辨識系統。
  • Item
    以關係類神經網路與嵌入式平台為基礎實作人臉辨識之研究
    (2021) 蔡佳韋; Cai, Jia-Wei
    隨著科技的日新月異,使得人工智慧逐漸融入我們的生活,人工智慧的應用層面相當的廣泛,許多應用上都能看到它的影子,包括車牌辨識、股票預測分析、AOI 瑕疵檢測、推薦系統、聊天機器人等等,以及本論文的核心-人臉辨識都是常見的應用。 傳統的 Convolutional Neural Network 對於分類問題具有相當好的辨識力,但 是僅限於已知類別,對於未知類別是無法應對的,Convolutional Neural Network 會將其納入已知類別分數最高的一類。為了解決分類限制的問題,我們以 Relation Neural Network 的架構來做為主要開發的演算法則,由於它可以透過度量學習來 判斷影像與影像標的之間的相似度距離分數,透過設立門檻值來依據相似度分數 的高低,判定是已知類別或是未知類別。 在本論文中,每位已知者都共享相同的 Autoencoder 特徵擷取網路,並且有 屬於自己的打分數網路,不會因為一個人的加入或退出而影響整個網路導致需要 重新訓練,在管理層面相當有彈性。此外,為了增加系統的實用性,我們將類神 經網路整合至 Android App 專案,使其可以運行在低成本且輕量化的嵌入式平台, 在保持著與原有準確度及速度的情況之下,達到邊緣運算的成效。