資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於AlphaZero General與MuZero General框架實現點格棋
    (2023) 曾羭豪; Tseng, Yu-Hao
    點格棋(Dots and Boxes)是一款雙人、公正、零和與完全資訊的遊戲,儘管棋盤很小就有很高的複雜度。本論文以3×3盤面大小的點格棋作為課題,實現於AlphaGo Zero、MuZero架構上,並且還提出了適用於連續走步棋規的Exact-win策略實現於點格棋上,並運用於AlphaGo Zero的訓練與對弈上。在實作上,我們採用AlphaZero General與MuZero General兩個開源碼,分別是基於AlphaGo Zero與MuZero的論文實現。兩者皆是易於理解的Python開源專案,透過簡潔的架構幫助使用者輕鬆的能在AlphaGo Zero與MuZero的架構上實現遊戲並訓練,省去了從頭開始架構AlphaGo Zero與MuZero的工作,能更專注於相關研究。從實驗結果驗證,我們實現的AlphaZero General、Exact-win與MuZero General代理人,在與破解程式對手的對弈中,分別取得了98%、100%與32%的勝率。此外,還證明了Exact-win策略用於訓練階段能有效提升訓練速度與成效,以及訓練後期代理人棋力穩定度。透過一些盤面測試,證實了這些代理人在一些盤面上確實能搜索出最佳走步並且執行。
  • Item
    MuZero 演算法結合連續獲勝走步改良外圍開局五子棋程式
    (2022) 饒鏞; Jao, Yung
    2019年,DeepMind所開發的MuZero演算法使用「零知識」學習,將人工智慧帶往更加通用的研究領域。由於以此演算法所開發的Muzero-general原始版本外五棋程式,其模型訓練時只估計遊戲的結束狀態,增添了許多訓練時的不確定性,於是本研究嘗試以連續獲勝走步改良此外五棋程式。迫著走步是外五棋遊戲當中非常重要的獲勝手段,連續獲勝走步則是在正確使用迫著走步後,所得出的獲勝走步。本研究透過連續獲勝走步原則,進一步以對局過程中是否有提供以迫著搜索得出之連續獲勝走步,以及不同的迫著搜索設計結合不同情況的連續獲勝走步獎勵,設計了三種不同的改良方法。實驗結果表明,在相同的訓練時間下,三種方法均成功對原始版本進行改良,其中採用加入主動進攻走步之迫著搜索設計為棋力最強的方法。關鍵詞 : MuZero、神經網路、迫著搜索、連續獲勝走步