資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於軌跡辨識技術之人體姿勢自定與分辨研究
    (2012) 周敬恩; Chou,Ching-En
    鍵盤、滑鼠,是操作電腦不可或缺的設備,而隨著時代的進步,輸入設備不再侷限在此之上,如眼動儀的使用,運用眼球追蹤技術來控制滑鼠;語音輸入、辨識系統,能使較不熟悉鍵盤操作的使用者,能夠利用語音輸入設備達到打字的效果;觸控螢幕,讓手機、電腦的操作在手指滑動間即可達成,這些科技的發明,都讓電腦的操作更為人性化。而本研究係使用的微軟Kinect做為輸入端,讓使用者能自行輸入姿勢後再經本系統進行辨識,讓使用者以最直覺且習慣的方式操作電腦。本系統係以軌跡辨識為基礎,收集Kinect所提供的骨架資訊,再以決策樹的方式對使用者所輸入的姿勢進行儲存、分類與辨識,並在不造成使用者負擔的前提之下,以少量的事前訓練姿勢達到一定的辨識效果。
  • Item
    偵測各類電影精彩片段之研究
    (2014) 蔡晏瑋
    在多媒體內容分析領域中,影片精彩片段之偵測是一個十分熱門的議題。在過去的研究當中,許多的方法針對運動類型的影片做精彩片段之偵測。對於十分龐大的電影資料,使用者在挑選自己想要收看的影片時會花費大量的時間。因此,如何讓使用者更有效率地去挑選一部想要收看的影片,變成了一個有趣的議題。在本論文中,我們提出了一個對於各類電影精采片段偵測的方法。藉由偵測出精彩片段,做為使用者挑選影片的參考。我們所提出的方法建立在結構化輸出之機器學習模型Structured Output SVM(SOSVM)上以及影像中的特徵分析。其中特徵部分,分為視覺及聽覺兩種。視覺特徵使用的為中階特徵,為鏡頭切換頻率以及鏡頭標籤。聽覺特徵則是基本的音量大小以及聲音頻率。而結構化輸出的機器學習方法有別於傳統SVM的輸出侷限於一個數字或一個標籤,其輸出可以是一個複雜的結構物件。因此在預測精彩片段的學習上,結構化輸出的機器學習方法使我們能夠更直接解決問題。在實驗中,我們使用動作片類型電影以及喜劇片類型電影作為資料庫。整體系統對於兩種不同類型的電影的精彩片段預測皆呈現出不錯的準確率。