資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    語音文件摘要 - 特徵、模型與應用
    (2011) 林士翔; Shih-Hsiang Lin
    語音文件摘要容易受語音辨識錯誤的影響,進而導致在使用傳統文字文件 摘要方法時並無法正確地摘要出語音文件中重要文句。相對於文字文件,語音文 件在從事語音摘要時卻額外地提供了許多的資訊:諸如聲韻特徵(Prosodic Features)、聲學特徵(Acoustic Features)、語者(Speaker Roles)或情感(Emotion)資訊等,都是從事語音文件摘要時可以善加利用的額外語句特徵。本論文以特徵(Features)、模型(Models)與應用(Applications)等三個不同構面進行語音文件摘要之研究。在特徵層面,我們探討如何使用不同的詞圖結構表示語音辨識候選詞序列(Recognition Hypotheses),進而解決傳統因為只利用單一最佳辨識詞序列(1-Best)所造成的辨識錯誤影響。在模型方面,我們基於Kullback-Leibler (KL) 散度測量(Divergence Measure)方法提出了一個非監督式(Unsupervised)的摘要模型,此摘要模型允許利用文字以外的資訊線索增進散度測量正確性,進而減緩因為語音辨識錯誤所造成的問題。同時,針對監督式(Supervised)的摘要模型,我們提出了三種不同的訓練準則進行摘要模型訓練,以解決訓練資料不平衡(Imbalanced Data)所導致的負面影響。架構在此二類不同的摘要模型之上,我們進而提出了一個風險感知(Risk-Aware)的摘要架構,此架構透過監督式與非監督式摘要模型的結合,不僅能保有其各自的優點更進而克服各自方法的侷限。我們亦導入了不同的減損函式(Loss Function),以便考量語句-語句或者是文章-語句間的冗餘性與連貫性關係。對於應用層面,我們探討如何將摘要技術整合至資訊檢索技術上。本論文所提出之方法均實驗在廣播新聞語料,實驗結果亦證明本論文所提出之方法可大幅地改善現有摘要方法的效能。
  • Item
    探究語句模型技術應用於摘錄式語音文件摘要
    (2013) 張皓欽; Hao-Chin Chang
    摘錄式語音摘要是根據事先定義的摘要比例,從語音文件中選取一些重要的語句來產生簡潔的摘要以代表原始文件的主旨或主題,在近幾年已成為一項非常熱門的研究議題。其中,使用語言模型(Language Modeling)架構結合庫爾貝克-萊伯勒差異量(Kullback-Leibler Divergence)來進行重要語句選取的方法,在一些文字與語音文件摘要任務上已展現不錯的效能。本論文延伸此一方法而三個主要貢獻。首先,基於所謂關聯性(Relevance)的概念,我們探索新穎的語句模型技術。透過不同層次(例如詞或音節)索引單位的使用所建立的語句模型能與文件模型進行比對,來估算候選摘要語句與語音文件的關係。再者,我們不僅使用了語音文件中所含有語彙資訊(Lexical Information),也使用了語音文件中所含隱含的主題資訊(Topical Information)來建立各種語句模型。最後,為了改善關聯模型(Relevance Modeling)需要初次檢索的問題,本論文提出了詞關聯模型(Word Relevance Modeling)。語音摘要實驗是在中文廣播新聞上進行;相較於其它非監督式摘要方法,本論文所提出摘要方法似乎能有一定的效能提升。