資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於 AI 硬體加速器的自動化類神經網路設計與部署之研究
    (2023) 黃任慶; Huang, Ren-Ching
    由於大多邊緣裝置由於對於類神經模型推理的運算效率不佳,因此邊緣裝置通常會搭配上AI硬體加速器,來進行更有效率的運算。然而如何將類神經模型推理應用至AI硬體加速器進行加速,必須從軟體端加速器的使用,到硬體端加速器的架構,都要有深刻理解,這對於開發者來說是一個不小的挑戰。本論文研究基於RISC-V架構下的 Gemmini 硬體加速器平台,開發一套圖形介面工具。開發者根據自身的需求,在工具中選擇需求的模型架構,將其轉換成中間表達式,藉此生成模型架構程式碼,以及硬體推理程式碼。模型架構程式碼供軟體端模型訓練以及模型量化用;硬體推理程式碼供邊緣裝置利用硬體加速器進行模型推理。本論文將透過圖形介面生成之程式碼,生成基於CNN,以及GRU的兩種不同模型架構,執行於含Gemmini加速器平台的FPGA板上,以Clock Cycles為運算速度的根據,比較模型運算時使用加速器與否的差別。藉由兩種不同種類模型的比較,驗證Gemmini的加速效果及使用本研究開發之圖形介面的可行性。
  • Item
    通用型脈動陣列 AI 加速器:評估適用性與效能研究
    (2023) 余松恬; Yu, Song-Tien
    本論文旨在評估通用型脈動陣列 AI 硬體加速器在不同類型神經網路模型上的適用性及效能。隨著深度學習在邊緣運算中的廣泛應用,硬體加速器的設計成為提升邊緣運算效率的關鍵。然而,為每種類神經網路配置專用的硬體加速器並不切實際,若硬體加速器配置需要隨著模型架構的不同而頻繁改變,將是高昂成本負擔。本論文提出一套通用型 AI 脈動陣列硬體加速器的配置,目的是解決類神經網路應用中硬體適配的問題,使單一硬體加速器能夠適用於多種不同類神經網路架構,並建立了一個基於 RISC-V 核心且與通用型 AI 硬體加速器做整合之SoC 架構平台,實作於 FPGA 板,該 SoC架構提供一個真實情況的評估平台。本論文選用 Gemmini 作為通用型脈動陣列 AI 硬體加速器的代表,在不同的硬體配置下,針對兩種具代表性的類神經網路模型進行實驗,分別是基於二維卷積神經網路的影像元件辨識模型以及基於一維卷積的手勢辨識模型。本研究會結合效能評估並衡量 FPGA 硬體資源使用量,提出合適的通用型脈動陣列加速器硬體配置選用方案,供 AI 領域研究者參考。
  • Item
    基於RISC-V架構之脈動陣列一維卷積運算研究
    (2022) 蔡佳諭; Tsai, Chia-Yu
    現有Edge端裝置由於產品定位原因,多數運算能力不足以應付AI模型應用程式,也因此裝置搭配硬體AI加速器,來使其足夠運算AI模型的方式成為此困境的解決方法之一。本論文研究基於RISC-V架構下的硬體AI加速器平台Gemmini,透過RISC-V中的custom指令為基礎,設計可利用加速器進行運算的一維卷積運算程式,使得此加速器平台能廣泛應用於類神經網路中。本論文將設計的程式執行於包含Gemmini平台的FPGA上,以Clock Cycles作為運算速度依據,比較模型運算時使用加速器與否的差別,以及直接使用Gemmini,與重排資料後再使用Gemmini執行一維卷積運算的速度差距,藉由此兩種比較,驗證Gemmini的加速效果及直接使用其運算1-D CNN的可行性。