資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    信心度評估於中文大詞彙連續語音辨識之研究
    (2006) 陳燦輝; Tzan-hwei Chen
    本論文初步地探討信心度評估(Confidence Measures)於中文大詞彙連續語音辨識上之研究。除了討論原本一般信心度評估應用於判斷語音辨識結果(例如候選詞)是否正確之外,也嘗試將信心度評估應用在詞圖搜尋(Word Graph Rescoring)或N-最佳詞序列(N-best List)重新排序(Reranking)的研究。而實驗語料則是使用公視新聞語料庫(MATBN)中的外場記者(Field Reporters)跟受訪者(Interviewees)語句,以分別探討信心度評估在偏朗讀語料(Read Speech)或偏即性口語(Spontaneous Speech)等兩種不同性質的語句上是否能有不同的效能。首先,本論文嘗試使用熵值(Entropy)資訊並結合以事後機率為基礎之信心度評估方法,在MATBN外場記者(Read Speech)及外場受訪者(Spontaneous Speech)測試語料所得到的最佳實驗結果,可較傳統僅使用以事後機率為基礎之信心度評估可以分別有16.37%及12.00%的信心度錯誤率相對減少(Relative Reduction)。另一方面,在以最小化音框錯誤率(Time Frame Error)搜尋法來增進詞圖搜尋的正確率之實驗中,本論文嘗試結合以梅爾倒頻譜係數(Mel-frequency Cepstral Coefficients, MFCC),以及以異質性線性鑑別分析(Heteroscedastic Linear Discriminant Analysis, HLDA)搭配最大相似度線性轉換(Maximum Likelihood Linear Transformation, MLLT)兩種不同語音特徵參數所形成的詞圖資訊,並以最小化音框錯誤率搜尋法來降低語音辨識系統的字錯誤率,經由實驗顯示在外場記者測試語料能有4.6%的字錯誤率相對減少,而在外場受訪者測試語料的部份則有4.8%的字錯誤率相對減少,相較於僅使用異質性線性鑑別分析及最大相似度線性轉換求得語音特徵參數的詞圖並配合最小化音框錯誤率法有較佳的結果。最後,本論文嘗試在傳統以Levenshtein距離為成本函式(Cost Function)的最小化貝氏風險(Minimum Bayes Risk)辨識法則中,適當的加入以特徵為基礎的信心度評估。雖然經由實驗得知,在外場記者以及外場受訪者的語料中,對於辨識錯誤率並沒有很明顯的進步或退步,但相較於傳統利用Levenshtein距離為成本函式的最小化貝氏風險辨識法則而言,卻有較佳的結果。
  • Item
    可應用於一般課堂環境中之人眼開闔狀狀態研究
    (2013) 盧姿卉
    眼睛開闔辨識是電腦視覺的一個重要技術,能夠在生活中發展成多種應用,大部分的眼睛狀態偵測,環境皆屬於背景較為單純、近距離以及頭部晃動不大的情形,像是汽車駕駛疲勞偵測系統,然而本研究希望能將眼睛開闔辨識應用於一般課堂環境中,因此需要解決在有光線干擾及遠距離低解析度下的環境中,仍能快速且有效辨識眼睛的開闔狀態。 本研究之方法共分成三個部分,分別是人臉偵測、眼睛區域決策,最後則是眼睛狀態辨識。首先對影像做人臉偵測,接著將做完前處理的臉部影像利用局部取像的方法得到眼睛的大致位置,再利用水平投影及垂直投影找出眼睛精確的範圍及位置,最後本研究利用開闔眼睛影像輪廓複雜度之差異設計一套新的特徵擷取方式,並搭配已事前訓練過的SVM模型來判斷眼睛的開闔狀態。 無論是近距離或是遠距離實驗,由實驗結果可證明出在相同的辨識率下,本研究所設計之特徵擷取方式比複雜度函數的方法能判斷出的開閉眼資料比例多,因此整體的執行時間可以降低,也證明了本篇方法的可用性,除了開閉眼整體辨識率皆可達到84.9%以上,且隨著門檻值的調整,執行時間也可比單純用SVM快了1.5至3倍,時間上的減少能帶給本系統很大的效益。