資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    蜜月橋牌程式叫牌與換牌階段的策略改進
    (2022) 陳玠宇; Chen, Chieh-Yu
    不完全資訊賽局在當前的研究中仍存在許多尚須攻克的難點,其中大量存在的可能性狀態就是一個需要克服的難關。本研究希望透過對蜜月橋牌這項遊戲的研究來加深對不完全資訊賽局的了解並找到一些方法來處理爆炸性增長的狀態的問題。蜜月橋牌是一種三階段的遊戲,在每個階段中遊戲性質都會發生變化。本研究透過蜜月橋牌特性,成功完成及時分析換牌階段單一層的殘局庫全搜索,並撰寫了全新的蜜月橋牌程式,採用了bitboard的形式來實現,這大幅提升了程式的效能,並將程式讀取殘局庫的效能提升至每秒三千萬次的搜索速度。本研究利用打牌階段的資訊來代替使用人類經驗所建立牌力表,並使用取樣搜索的方式來判斷可執行行為的好壞,以此方法來使程式操作在打牌階段脫離人類經驗,這使得程式可以做到人類經驗以外的好步,大大提升了程式在換牌階段的能力。在經過調整叫牌階段策略與換牌階段策略後蜜月橋牌程式整體的對戰能力已經有著不錯的提升,在對戰人類玩家時有著不錯的勝率,並對戰先前的程式中也能保持超過六成的勝率。
  • Item
    蜜月橋牌程式開發及殘局庫的建立
    (2020) 楊承恩; Yang, Chang-En
    蜜月橋牌為兩人對戰的橋牌遊戲,遊戲有三個階段,分別為叫牌、換牌、打牌,規則與合約橋牌大致相同。只是多了換牌階段,增加了更多變化性,在叫牌階段屬於不完全資訊賽局,換牌階段會從不完全資訊賽局慢慢變成完全資訊賽局,在最後的打牌階段則是完全資訊賽局,是非常有挑戰性的遊戲。 在本論文中針對此三個遊戲階段設計了不同的演算法及策略,改良並整合了前人的策略,將無王及有王的規則結合在一起。並構思一套嶄新的做法,建立了殘局庫,將雙方13張手牌所有可能的組合,包含先後手及不同王牌花色的賽局結果紀錄起來,已成功破解蜜月橋牌的打牌階段,使得打牌階段不再需要花大量時間搜索。針對殘局庫的資料也進行了壓縮,完整的有王殘局庫Trump_D_level1~13大小共佔4.59GB,無王殘局庫NoTrump_D_level1~13大小共佔1.34GB,目前程式牌力有很不錯的水平,已與蜜月橋牌高手相當了。 最後開發了簡易蜜月橋牌對局平台,方便後人研究蜜月橋牌時使用,也有助於推廣此項遊戲。
  • Item
    中國跳棋對弈平台與AI的實作
    (2019) 陳律濃; Chen, Lu-Nung
    近年來關於人工智慧的研究如火如荼的湧現,未來電腦的效能越高,相同時間內能處理的資訊量也會越高,人工智慧能解決的問題複雜程度亦會越來越大,例如近年來電腦對局中圍棋與人工智慧的成功結合例子AlphaGo。然而電腦對局的研究若要進展得順利,設計良善的使用者操作介面必不可少,所以本研究針對中國跳棋遊戲設計一個支援多玩家遊戲的自動對弈平台,期望在電腦對局的發展上能貢獻微薄之力。 本研究開發之電腦中國跳棋自動對弈平台利用OpenCV函式庫實作出一個直觀且方便的圖形化使用者操作介面,可以只用滑鼠點選各項功能進行設定並操作棋子。另外平台具備程式偵錯與對戰等主要功能,除了在比賽時能夠使雙方更清楚地檢視遊戲過程並減少手動操作失誤與爭議之外,偵錯時也可以藉由此平台檢視與驗證每一個走步的正確性,預設對戰對手也包含了本研究開發之AI引擎提供開發者測試強度。如此一來其他跳棋研究者只需專注於研發跳棋程式的AI引擎,以期望有更多同好加入電腦中國跳棋的研究,也有助於推廣中國跳棋這項遊戲。
  • Item
    基於AlphaZero General Framework實現Breakthrough遊戲
    (2019) 吳天宇; Wu, Tian-Yu
    在現今人工智慧電腦對局領域中,多數棋類的頂尖程式,都以AlphaZero的開發框架獨占鰲頭,棋力遠超以往傳統的程式,然而此種架構中有許多研發內容並不因不同棋類的規則而有所不同,當需要研發新種類的對局程式時將會有許多重複的前置開發成本。 故本論文中以C++實作遊戲規則及搜尋樹處理,以Python與TensorFlow套件實作類神經網絡訓練,兩者結合出易讀且運行效率較高的通用型AlphaZero框架的程式,此框架能夠讓使用者只需更改遊戲規則,即可開始AlphaZero的訓練模式。相較於GitHub相關開源碼中,Surag Nair先生全部以Python語言開發的alpha-zero-general程式,在突圍棋(Breakthrough)運行上,單執行緒速度效能可提升77.8%。 此外,本論文另外實作並測試三個可能的改良方法,用於提升整體AlphaZero訓練流程的棋力。其修改點並不因不同棋類規則而有所不同,目的在於讓後續能套用至通用型AlphaZero框架的棋類也能夠受益。分別是對訓練資料進行增量的Replay方法、應用MMoE(Multi-Gate Mixture-of-Experts)類神經網路架構於AlphaZero中欲增強網路模型的預測能力,以及利用改良原版AlphaZero中如何贏得越快越好的Quick Win方法,將針對類神經網路的Label更改標記方式與蒙地卡羅樹搜尋演算法進行改良。