資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於 Nvidia OptiX 7 框架下之 Bidirectional Path Tracing分析與探討
    (2022) 方靖涵; Fang, Ching-Han
    雙向路徑追蹤是一種基於真實世界中的物理現象來繪製高品質影像的演算法。有別於一般的路徑追蹤,雙向路徑追蹤同時考慮到了多種重要性採樣策略來加快繪製速度,但這個演算法仍然要使用大量的運算資源,並不能即時繪製。隨著GPU的進步,GPU不只支援平行運算,還有特別的運算單元來對光線追蹤運算進行硬體加速。本文討論了雙向路徑追蹤的理論以及如何在Nvidia OptiX 7框架上建立Bidirectional Path Tracer。為了比較雙向路徑追蹤與一般的路徑追蹤,本文分別使用兩種演算法,在限定的時間內繪製特定的場景並計算結果與參考圖的平方差。實驗結果顯示,在實驗的設置下,雙向路徑追蹤確實優於一般的路徑追蹤。
  • Item
    使用 VCM 演算法於不同場景之比較與改進
    (2021) 姜道誠; Chiang, Tao-Cheng
    計算機圖學在幾個重要的演算法推進下,產生出了幾種針對不同物理效果的算圖方法,包含比較早的雙向路徑追蹤(Bidirectional Path Tracing),以及對於焦散(Caustic)效果卓越的光子映射(Photon Mapping),這兩種方法在基礎上有所不同,擅長的物理效果也不一樣,而後來則有人結合兩種方法,並稱之為Vertex Connection and Merging,結合兩種演算法不同的優點,對某些難以計算的路徑產生較好的效果,是VCM成功的地方。雙向路徑追蹤能讓蒙地卡羅路徑追蹤快速收斂,進而在短時間達到相當好的圖像品質,然而對於某些材質與路徑卻難以達到理想的效果,例如Specular鏡面以及焦散效果。而光子映射演算法則能對於這兩種物理現象產生理想的圖像品質,但該方法若是光子數量不足,則會在Diffuse表面產生斑紋等效果不佳的情況。 本篇論文主要探討VCM與雙向路徑追蹤在某些固定場景下的效果與優劣,並藉由調整雙向路徑追蹤與光子映射使用的比例權重,改善VCM對於Diffuse表面帶來的缺點。
  • Item
    使用光線追蹤在OptiX框架下之蒙地卡羅路徑追蹤演算法分析比較
    (2020) 吳紹瑋; WU, Shao-Wei
    傳統電腦圖學使用光柵化來繪製3D物件,但該方法對於擁有反射與折射等場景物件中,無法有較好的真實畫面。因此我們要使用基於物理性質計算的光線追蹤技術。在現實世界中,計算的資訊量是趨近於無限的,因此我們只能透過採樣來計算,即便如此運算的需求還是非常的高。   近年來計算機圖學領域隨著硬體設備的提升,即時的光線追蹤運算從二十年前的理論逐漸轉向可以實際達成。Nvidia推出的RTX系列圖形處理器與OptiX光線追蹤框架,提供使用者研究平行化部屬光線追蹤理論,本文中將使用OptiX 6.5 框架開發光線追蹤程式,研究不同場景與演算法之差異。主要探討演算法有原本圖學使用方法光柵化 (Rasterization) 與光線追蹤方法蒙地卡羅路徑追蹤(Monte Carlo Path Tracing),雙向路徑追蹤(Bidirectional Path Tracing),混合光線追蹤(Hybrid Ray Tracing),比較各自演算法於不同圖形處理器和場景所產生渲染效果與速度。