資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    基於高維度資料分解的空氣污染視覺化分析
    (2023) 楊千艎; Yang, Chien-Huang
    空氣污染是一個嚴重的全球環境問題,對人類健康和生態平衡造成嚴重影響。PM2.5是微粒物質的一個子集,直徑小於2.5微米,已經與嚴重的呼吸和心血管問題、土壤和水污染以及生態系統破壞相關聯。為了更好地了解PM2.5的來源和分佈,我們採用了一種類似PARAFAC的分解方法來分析台灣使用空氣盒子設備收集的空氣質量數據。這種方法允許識別導致某個地區和時間PM2.5濃度較高的因素,從而提供PM2.5分佈模式的洞察。為了增強對這些模式的分析,我們提出了一種通過可視化進行交互式多視圖分析的方法,以探索和理解複雜的數據集。這種方法旨在幫助更好地理解空氣質量,改進複雜數據集的分析和解釋,最終獲得更好的洞察和結果。
  • Item
    專有詞彙之定義式問題答案句自動擷取系統
    (2010) 卓晉緯; Chin-Wei Cho
    本論文針對專有詞彙之定義式問題,建立一套以電子書為答案來源之定義式 答案句自動擷取系統雛形。本論文運用資訊檢索的概念由電子書內容中選取候選句子,並提出以維基百科等外部知識來源衡量句中所包含的字詞與查詢專有詞彙關鍵字的關聯權重值,作為系統挑選答案句之評分依據。本論文方法能夠讓答案不受限於特定定義式句型,而找出更多能夠幫助了解該專有詞彙之相關定義解釋說明的內容作為答案。並採用句子間字詞的語意關聯度,綜合評估計算答案句間的相似程度值,以不同聚落分析演算法對答案句進行自動分群處理,使答案句能依所涵蓋概念類似性分群整理呈現給使用者。由實驗結果顯示,本論文研究方法所擷取之答案句及排序順序,與專家人工評分挑選的標準答案結果一致性很高。
  • Item
    以字詞類別概念輔助部落格文件分群之研究
    (2010) 范喬彬; Chou-Bin Fan
    本論文研究使用ODP (Open Directory Project)目錄結構做為外部知識來源,透過ODP的查詢功能得到字詞的所屬類別作為特徵,結合文章中所有字詞所屬的類別及比重值來建構出特徵向量,希望改進單純以關鍵字擷取建立特徵向量的缺點,進而達到較好的主題式文章分群效果。此外,每個部落格中文章內容主題的集中度不同,在以K-Means演算法進行分群時,經常遇到的問題是不知道如何設定適當的聚落數目K值,本論文研究亦提出根據文章集合中各文章的特徵向量自動決定K-Means演算法的聚落數目及初始代表點,使部落格文章分群能更自動化。 我們將類別特徵向量法與字詞特徵向量法分別套用在文章分群實驗上,並將分群結果以Accuracy及Purity值進行評估,評估結果顯示類別特徵向量法在測試集中大多數的部落格皆能得到比字詞特徵向量法更好的分群結果。此外,實驗顯示結合文章的標題詞與複合詞類別特徵向量可進一步提升文章分群的效果。
  • Item
    多個專有詞彙概念解釋句語意關連自動分析組織之研究
    (2010) 戴衣菱; Yi-Ling Tai
    本論文研究以電子書作為內容來源,針對兩個特定領域專有詞彙的概念解釋句,進行自動擷取以及分群組織整理。為了克服傳統上使用字詞頻率建構特徵向量卻忽略隱含語意關係的缺點,本論文提出計算句子中出現的所有字詞對選取的特徵字詞之語意相似關係,來對句子建立MI特徵向量,進行句子分群。從分群的結果中選定可以代表分群概念的標籤,使用標籤來重新組織概念架構,並且在分群中挑出可以代表兩個專有詞彙的比較句。
  • Item
    資料流最近常見項目集變動探勘之研究
    (2009) 李蕙君; Huei-Jyun Li
    本論文針對資料流滑動視窗的模型提出一個探勘狀態變動項目集的方法,稱為CV-SCD(Cross-Verify Status Change Detection)演算法。本方法主要利用兩棵稱為Base-Tree及Delta-Tree的相同字首樹之樹狀結構,儲存在任一時間點t時滑動視窗中所有交易資料,以及從t到t+1之間新增及過時的交易資料,並利用Base-Tree及Delta-Tree的資訊判斷出狀態變動項目集,再同時對兩棵樹遞迴建立包含特定項目的條件樹,以探勘出更長的狀態變動項目集。本論文對固定區間長度探勘出的狀態變動項目集儲存成狀態變動資料項集快照,並採用金字塔式時間框架的結構來儲存快照,提供可由使用者指定特定時間區間對其中各狀態變動項目集的變動情形進行相對特性分析。實驗結果顯示,當新增及過時的交易資料相對於滑動視窗資料為少量,或是資料集中包含之項目種類較多,或是在支持度小的情況下,CV-SCD演算法相較於以FP-growth探勘出常見項目集後再進行狀態變動項目集比對可顯著增進執行效率。
  • Item
    使用關聯式規則於自拍角度調整
    (2016) 謝宜璁; Hsieh, Yi-Tsung
    近年來隨著智慧型手機的興起,使得自拍風氣非常盛行。然而,不是人人都能拍出好看的自拍照。因此我們提出一個虛擬攝影師的想法,在自拍時幫助使用者調出好看的自拍角度。首先,我們從6,785張好看的自拍照中擷取出頭部旋轉角度以及臉部特徵點,並以此設計了45個比例特徵。為了要找出好看的自拍特徵,我們將此問題轉化為關聯式法則學習問題,並利用先驗演算法找出高頻項目集以及關聯規則,作為推薦來源。最後,我們提出了五種推薦策略,分別針對水平和垂直方向上做調整推薦。在實驗中,我們使用50張台灣素人女性自拍照當作測試資料,並設計問卷來蒐集攝影師對於這些自拍照片的調整建議作為真值資料。我們使用卡帕值評估五種策略分別在水平方向及垂直方向上的推薦表現。實驗結果顯示,在水平方向上攝影師間並沒有一致性,顯示好看的自拍於水平方向調整較難有共識,但在垂直方向的推薦與攝影師提供的建議有一般一致性。