資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    利用 Radius Neighbors Regressor 模型預測台灣股市加權指數並賦予強弱指標
    (2024) 黃昱凱; Huang, Yu-Kai
    股票投資是現代人在累積資產上不可或缺的工具,雖然投資理財有賺有賠,但是若能夠找到一套良好的交易策略,以及善用各種分析工具,達到長期穩定獲利也是一件可以期盼的事情。本論文使用Radius Neighbor Regressor之機器學習方法並結合個人之股票交易經驗,在特定時間窗口之大盤強弱指標以及大盤中長期的多空頭判斷上取得了良好的結果。在實作上,我們使用Radius Neighbor Regressor與個人交易經驗所挑選出的特徵值作為產生強弱指標的依據。資料收集樣本時間為2013/1/25~2023/12/21,總共2668個交易日。主要資料來源取自XQ全球贏家之資料庫,並且使用所經加權後的強弱指標分別在幾種預測時間的長短進行比較與分析。從實驗結果驗證,我們發現使用Radius Neighbor Regressor搭配個人交易經驗所挑選出的特徵值,在以60個交易日預測後20個交易日的結果準確率高達73%,且在傳統多空頭的分析上也得到了良好的結果。另外,還證明了在特徵值選擇上以個人交易經驗做選擇的優勢,最後也彌補了單純使用Radius Neighbor Regressor機器學習方法的缺點,得出最佳的一種大盤強弱指標之模型。
  • Item
    基於追蹤補償方法之籃球球員追蹤
    (2024) 陳宥睿; Chen, You-Ruei
    現今資訊科技蓬勃發展,電腦視覺技術經常應用於我們生活的周遭,而物件追蹤更是一項關鍵的技術,應用於自駕車、智慧行人追蹤和體育運動項目等領域。以籃球比賽中的球員為例,透過鏡頭追蹤球員在球場上的移動軌跡,可以對比賽進行詳細分析。針對現有的一般追蹤方法(YOLOv7+StrongSORT),由於球員間的遮擋或重疊,常常會發生球員ID變換(ID Switch)且無法復原該球員原有的ID(Identifier)的情況。為了解決這一問題,我們提出了追蹤補償方法,該方法能在ID變換時匹配回先前的ID,從而提升球員追蹤的準確性。 在實驗結果中,我們選擇了在一般追蹤方法之下加入球員追蹤補償方法的架構(實驗組)以及僅使用一般追蹤方法的架構(對照組)進行比較。在MOTA(Multiple Object Tracking Accuracy)的數據上,對照組與實驗組的表現都高於90%。在評估球員ID變換時復原球員ID的整體ID變換復原率(ID Switch Recovery Rate)上,使用球員追蹤補償方法的實驗組得到了74%的整體ID變換復原率,而對照組只有48%。在整體追蹤準確度上,實驗組的IDF1(Identification F-Score)達到79%,而對照組則只有66%。從數據結果表明,使用球員追蹤補償方法後,整體ID變換復原率有明顯的提升,能夠減少球員ID在變換後無法復原的問題,從而使得在整體追蹤準確度上,IDF1得到顯著提升。
  • Item
    以注意力模塊、殘差連接建構之雨量深度學習超解析度模型
    (2023) 江家浩; Chiang, Chia-Hao
    人口的過度增長、土地的開發以及化石能源的消耗在近百年來造成地球氣候的變遷。自然災害發生的頻率也因此增加,並造成許多人類的傷亡以及產業的經濟損失。為了減緩自然的衝擊與資源的消耗,各國政府機關制定了相關政策,以減緩消耗;科學家們研發全新的、乾淨的替代能源,另一方面,氣象學家們則是藉由模型的建構,來模擬並預測這些極端事件的發生,以利人們在災害來臨之前做好準備,減少損失。其中,以水資源的影響最為深遠,它是地球中最基本也是重要的循環之一,同時也是占比最重的溫室氣體,且與人類活動息息相關。我們以台灣為例,台灣雖然年降雨平均高達2,500毫米,然而人均水資源卻是低於全球平均值。這是因為台灣的崎嶇地形特色所致,再加上季風與洋流的作用,使得降水的時空間分布不均。若能預測雨量的分布,則可訂定相關的防洪或者儲水建設,以降低災害並最大化水資源的利用,故一個準確且高解析度的預測模型一直是科學家們努力研究的方向之一。現今普遍的做法是將氣象模型的模擬資料做降尺度來提升解析度以供區域性的參考。然而這些預測模型所消耗的計算資源甚鉅,且解析度有限,很難提供疆域小且地形交互作用複雜的地區有準確的預測結果。我們提出了一個以深度學習為基礎,並結合殘差連接、注意力模塊的超解析度模型,可望提升現有的氣象模型所產出之低解析度的結果之準確性和解析度。文末,我們也比較了其他氣象降尺度的方法和其他機器學習為基礎的模型,並在四種指標(平均絕對誤差、方均根誤差、皮爾森係數、結構相似性)、定量降雨預報檢測中優於其他氣象降尺度的方法。
  • Item
    腳底壓力辨識系統對於穿著不同鞋種的機器學習與特徵組合之研究
    (2023) 許家維; Hsu, Chia-Wei
    物聯網應用在近年生活中越來越廣泛,像是智慧型手機、智慧手錶與電腦等,皆讓人類的生活更加便利,為了快速且更安全的身分認證來解鎖相關設備,生物辨識技術扮演了非常重要的角色,此技術相較於傳統文字密碼而言,不易被偽造且安全度較高。在過去的腳底壓力分析的研究中,大多皆以赤腳為主要實驗條件,對於在多鞋種相關的條件下研究較少,其使用成本較高的設備進行研究,因設備成本較高對於腳底壓力辨識技術廣泛的應用較為困難。本論文主要在探討受測者穿著多鞋種的情況下,使用腳底壓力辨識技術搭配機器學習與特徵進行身分辨識,最終分析不同機器學習與多特徵組合之辨識率、訓練時間和鞋種。實驗結果顯示使用隨機森林 (Random Forest, RF)在多鞋種實驗中可以達到最佳辨識率77%,訓練時間為2.83秒是所有機器學習中訓練時間最快;其在單一鞋種實驗中可以達到86%辨識率並發現慣用鞋能有更高辨識率。
  • Item
    平行處理和CPU頻率縮放對於腳底壓力辨識系統之省電研究
    (2023) 陳君三; Chen, Chun-San
    由於近年來生物辨識技術的興起,讓簽名認證方式不限於以往的帳號密碼,不僅讓生活更為便利且其安全程度也更為可靠。其中,步態辨識在醫療、運動、安全等等領域都有相關研究,我們可以從每個人的腳底獲取許多隱私資訊,根據每個個體不同的運動規律、踩踏重心以及個體大小來進行個體識別。在步態辨識領域中的腳底壓力分析的相關文獻裡,實驗或實作方式大多是以室內插座對電腦進行供電,因此省電方面的研究無人著墨。但當在無插座電源供電的情形下進行應用或實作時,腳底壓力辨識系統就會受到耗電量方面上的限制。因此我們的研究是針對嵌入式系統搭配腳底壓力辨識平台,在沒有室內插座供電的情形下進行省電的研究。我們對部分程式進行平行處理,並從機器學習演算法、CPU頻率模式、和變更核心數的角度對省電比例的影響進行分析,最後針對耗電量進行觀察與解析,並列出了最佳省電和最低耗電量兩種組合。實驗結果顯示,我們所使用的省電方法在四核心訓練階段省電比例可以達到7.02%,辨識階段的省電比例可以達到30.12%。
  • Item
    基於人體姿勢估計之跆拳道側踢分析
    (2023) 翁驊成; Weng, Hua-Cheng
    在跆拳道品勢 (Taekwondo Poomsae) 比賽或訓練中,評估該運動表現唯基於專家及教練的觀察,並根據其自身經驗會有不同的想法,存在多種公平性問題,此外,教練也無法全天候指導所有學員,人們對於量化評價方法和工具之需求日益增加。然而,跆拳道快速的肢體動作與結構極端繁複的技術,使量化困難且不易評估。跆拳道品勢單元技術中,側踢 (Side Kick) 屬於較複雜、評分比重較高的項目,因此,本論文針對側踢先行試驗,我們以臺北市立龍山國中以及國立臺灣師範大學的跆拳道品勢選手作為研究對象,並參考專家建議之評分標準,提出基於人體姿勢估計 (Human Pose Estimation) 之跆拳道側踢分析,通過專業認證的跆拳道側踢評分系統 (Taekwondo Side Kick Assessment System, SideKick),能夠有效地量化選手運動數據,分析並評估其側踢表現。 本研究中,我們首先建立了具高度公信力的跆拳道側踢資料集,由專業品勢教練進行動作質量評分;接著透過人體姿勢估計的方式,偵測人體關節點座標,精確獲取肢體運動角度及高度變化數據,使得運動特徵不易受場景影響,將攝影鏡頭校正難度降低;最後,我們參考專家提供之側踢建議量化特徵,分析各特徵的重要性排序,並利用機器學習的方式,訓練運動時空特徵及專家建議特徵,來預測選手整體側踢表現分數。 實驗以均方根誤差與交叉驗證評估多種回歸模型方法,最終選擇卷積神經網路模型,作為系統之評分模組。結果顯示實際應用之誤差為0.69,經信度檢驗,其結果也達顯著相關,在容許誤差為1的範圍內,準確率達86%。本研究提出之SideKick系統不需花費大量金錢及人力,且錄製設備取得容易。學員們能藉由本系統了解自身能力,教練們也可以在不限任何時間或地點下指導學員,提升團體訓練效益,並為未來遠程跆拳道品勢評價系統奠定基礎。
  • Item
    通用於第一人稱射擊遊戲外掛檢測機制之研究
    (2022) 陳逸文; Chen, Yi-Wen
    隨著科技的飛速發展,玩家可以在一台個人電腦上遊玩各種類型的遊戲,在各類型遊戲中,網路遊戲是大多數玩家最喜愛的遊戲類型,玩家為了在網路遊戲中獲得更好的成就,開始使用外掛程式達成個人無法實現的目標,基於上訴原因,作弊偵測成為了遊戲廠商的重大課題。本研究提出了一種基於影像辨識並以數據檢測輔助的作弊檢測系統,並分別使用VGG16、ResNet50、MobileNet V2、Xception和Inception v3 對誠實玩家和作弊玩家的瞄準軌跡進行檢測,研究結果表明,Inception V3 能最準確的分辨誠實玩家與作弊玩家。
  • Item
    基於斑馬魚運動軌跡之行為分類系統
    (2023) 唐黛玲; Tarng, Dai-Ling
    有關人類疾病的研究長久以來被人們所重視,由於斑馬魚基因與人類相近且可以被快速繁殖,斑馬魚在相關研究上扮演著重要的角色。斑馬魚經常被用來研究藥物與毒物對神經系統與行為的影響,斑馬魚已經被用來模擬過阿茲海默症、腦癌、癲癇、焦慮症以及肝臟疾病。然而目前研究斑馬魚的實驗經常需要仰賴肉眼或是昂貴商用軟體器材紀錄斑馬魚的運動軌跡,並做簡單的分析。因此進行斑馬魚實驗所需的時間、人力與金錢成本,使斑馬魚實驗變得複雜。本研究提出了一套斑馬魚行為模式分類系統Zebrafish Behavior Classification (ZBC) System,該系統能以軌跡資料對斑馬魚的行為進行分類。根據斑馬魚的啃咬、追逐、展示和正常等四種行為模式,我們提出了七種軌跡特徵的計算方法。這七種軌跡特徵包括軌跡相似度、總移動距離、平均幀間移動距離、最大和最小幀間移動距離、移動向量加總、最大和最小幀間移動距離向量,以及移動方向同方向的時間佔比。本系統會在計算七種軌跡特徵前先運用三種濾波方式清理軌跡資料,而七種軌跡特徵將用來訓練斑馬魚行為自動分類模型。 本研究比較了支持向量機 (Support Vector Machine, SVM)、隨機森林 (Random Forest, RF) 和極限梯度提升 (eXtreme Gradient Boosting, XGBoost) 等三種模型在斑馬魚行為自動分類模型上的準確度表現,同時我們也比較了均值濾波、中值濾波與卡爾曼濾波等三種資料清理方法運用在模型上的準確度表現。實驗結果顯示出ZBC在分類高度、中度和低度攻擊性的行為上能達到76%的準確度。另外,我們的研究發現不同資料清理方法和模型的搭配會影響分類的準確度,隨機森林在分類效果整體上有最高的準確度,而資料清理方法則須依照情況選擇。
  • Item
    腳底壓力辨識系統對於受測者在不同負重支撐點與重量之分析與研究
    (2021) 楊瑀婕; Yang, Yu-Chieh
    近年來,隨著物聯網應用的興起,網絡通訊不只侷限在手機與電腦間,除了帶來人類生活的便利外,資訊安全的議題也逐漸被重視,因而延伸出具唯一性的生物識別技術,生物辨識的簽名認證有別於傳統的文字或圖像式的帳號與密碼,其不易被偽造的特性也使得安全程度變得更為可靠。在過去的腳底壓力分析的研究中,比較少有提及與探討受測者在身體不同位置處攜帶負重,對於受測者攜帶不同重量的負重的研究也較無著墨。本論文主要在於探討受測者在赤腳情況下於,右側攜帶不同重量的負重與後側攜帶不同重量的負重對於搭配機器學習的腳底壓力感測技術的辨識度和模型訓練時間的影響的分析與研究。實驗結果顯示使用平均腳底壓力資料與攜帶大負重量會提升腳底壓力的辨識率。