資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    以Kernel為基礎之模糊分群演算法硬體架構實現
    (2012) 歐浩聲; Ou, Hao-Sheng
    本論文根據文獻[12]以及文獻[17],以此兩則文獻中提到的FCM-SC分群演算法的硬體架構和KFCM演算法的硬體架構為基礎,實作以非線性高斯核函式為核距離計算之KFCM[12] 再加上空間資訊[17] 後的分群演算法硬體電路,具有管線化以及可以同時計算所有分群之權重係數的能力。此架構改良了以往KFCM分群演算法對於有雜訊的資料做分群的問題,並且配合KFCM本身可以對非線性資料分群效果較好的能力,所以能夠廣泛地使用在許多的分群資料上,並且都有良好的辨識率。本論文使用FPGA實現我們提出的硬體架構,並使用人工雜訊圖片作為實驗測試資料。實驗結果顯示本架構對於有雜訊的非線性資料分群效果確實較KFCM佳,且架構簡單提供了日後高度的延伸性。
  • Item
    Kernel-Based Fuzzy c-Means分群演算法 硬體架構實現
    (2011) 楊斯閔; Yang Ssu-Min
    本論文根據文獻[6],以其FCM分群演算法的硬體架構為基礎,實作以非線性高斯核函式為核距離計算之KFCM分群演算法硬體電路,具有管線化以及可以同時計算所有分群之權重係數的能力。此架構改良了以往FCM分群演算法對於非線性資料分群效果不佳的問題,並且能夠應用在帶有雜訊的資料。本論文使用FPGA實現我們提出的硬體架構,並使用Iris data與人工雜訊圖片作為實驗測詴資料。實驗結果顯示本架構對於非線性資料分群效果確實較FCM佳,且架構簡單提供了日後高度的延伸性。
  • Item
    以Fuzzy C-Means硬體架構為基礎之快速影像分割之研究
    (2010) 張嘉晏; Chia-Yen Chang
    本論文根據文獻[6]將FCM演算法m值設定為2之硬體架構延伸於適用所有m值的FCM演算法硬體架構。此架構以管線化實現,並且具有平行計算的能力。在論文中我們使用查表法(lookup table)與泰勒展開式,推導出開根號計算之硬體電路,以減少根號運算時所耗費的硬體資源。此外,本論文將模糊分群演算法應用於影像分割的處理,並將FCM演算法之硬體架構延伸至FCM with spatial constraint演算法上,以改善雜訊影響影像分割的結果,以及保有硬體架構平行計算之優點。由實驗結果顯示,所提出的硬體架構能夠快速並有效的將模糊分群演算法應用在影像分割的處理。
  • Item
    高效能管線化架構之快速競爭式學習系統
    (2009) 洪嘉隆; Chia-Lung Hung
    中文摘要 本論文針對競爭式學習(competitive learning,CL)提出了一個全新的管線化(pipeline)架構,能夠有效的加速學習時間,此架構提出了神經元交換(swapping)的機制,來達到了不同訓練向量之間能夠同時進行神經元的競爭,有效增加神經元競爭階段時期的效能。而在神經元更新無可避免的除法部分,我們採用了查表式除法(lookup-table based division),能夠在很低的面積複雜度之下依然擁有很高的精確度,同時有效的降低耗時的除法運算。 此架構以現場可程式邏輯陣列(field programmable gate array,FPGA)為實現平台,我們已測量出以Nios軟核心中央處理器執行此新管線化架構所需的CPU時間,而實驗結果顯示出了CPU時間遠遠低於未搭配硬體電路的Pentium IV處理器。