資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    基於攝影機的多人健身運動偵測與辨識
    (2024) 張吳嘉; Chang, Wu-Jia
    大多數健身運動追蹤研究主要以單人追蹤進行,單人追蹤可以記錄的訓練資訊,包含:動作辨識、動作計數、重量辨識、訓練時間以及準確度分析。然而在健身房環境中同時會有多人使用各種器材,僅進行單人追蹤會無法捕捉到多人的運動情形。利用攝影機的多人追蹤技術,可以同時對健身區域進行大範圍的偵測與追蹤,而不局限於單人追蹤。本研究提出基於攝影機的多人健身運動偵測與辨識方法,拍攝廣角的畫面藉以同時涵蓋多樣健身器材,處理這些器材使用者的訓練影像資訊。首先,對健身影片進行人體偵測,找出畫面中所有人物的位置。由於訓練器材的位置固定而人員則是隨意走動,利用物件交集(Intersection Over Union, IOU)方法,可以定位出正在使用健身器材的人物。對於這些訓練者,利用人體姿態估計方法記錄使用者的運動資訊,辨識划船、肩推、胸推、上斜胸推、腿部屈伸等五種不同的健身動作,並計算運動者在該器材的動作次數。除此之外,由於健身動作可能被其他移動的人員所遮蔽,造成健身動作辨識與計次的判斷出現錯誤,因此藉由多攝影機的協調建立補償機制,改善在多人環境中因為遮擋產生的辨識問題。本研究根據健身房的實際情形拍攝,未刻意安排訓練過程,使用者根據自身習慣自由的選擇訓練動作與次數。為了驗證補償機制是否改善遮擋產生的問題,會確保拍攝的每部影片中都有遮擋情形發生。最後設計三項實驗用以驗證偵測與辨識方法之效果。根據實驗結果,系統可以利用物件交集方式區分出不同人物的運動過程,在多人的環境中區分出運動與非運動之人員,並且辨識使用者訓練的動作與次數。在發生遮擋情況時,加入補償機制減少運動次數漏檢情形發生,補償後的次數回復率為52%,改善因為遮擋產生的辨識問題。
  • Item
    基於攝影機的自由重量訓練追蹤
    (2024) 林厚廷; Lin, Hou-Ting
    在運動中利用自我監控(Self-Monitoring)的機制,紀錄運動過程來量化運動成效,可以提供訓練者反饋同時增強訓練者對運動效果的信心。而重量訓練(Weight Training )是一種抵抗自身外部重量的阻力訓練,需要根據自身需求瞭解訓練目標,規劃訓練內容並執行。因此,在訓練過程中紀錄下訓練動作、重量、次數、組數和訓練/休息時間五項關鍵資訊,可以幫助訓練者評估訓練品質、衡量進步幅度以及追蹤長期訓練計畫。本研究利用電腦視覺技術,提出非接觸式的重量訓練追蹤方法。透過攝影機拍攝訓練者與訓練設備,將影像利用人體姿態估計結合物件偵測與影像分割技術,獲取人體動作與訓練設備的基礎資訊。接著,配合動作辨識模型,根據訓練者實際的自由重量訓練模式,自動追蹤動作、次數、組數、重量與訓練/休息時間五項重量訓練關鍵資訊。本研究共收集 17 位訓練者分別執行三個自由重量訓練動作的實際訓練影像,並由三個視角同時拍攝,實驗資料集共 153 部影片。針對追蹤方法進行驗證評估,內容包括五項紀錄項目。實驗結果顯示,在完整拍攝人體動作與訓練設備的多視角攝影條件下, 本研究提出的方法能準確追蹤 17 位訓練者於不同視角的訓練動作與執行組數,平均準確率可達 100% ; 此外,次數追蹤於各視角之平均F1-Score可達 0.98 ; 重量追蹤則於不同視角之準確率達 96% ; 訓練/休息時間追蹤能在 8 秒誤差容忍情況下,平均準確率達 100%, 2-6 秒誤差容忍情況下,各視角平均準確率為 93% 。綜合以上實驗結果支持所提出追蹤方法,能有效追蹤五項重量訓練內容並記錄。
  • Item
    階梯教室之學生上課動作分析系統
    (2010) 郭明翰; ming han kuo
    本篇論文主要探討階梯教室學生上課動作分析系統。動作分析在教育領域尤其重要,老師可藉由觀察學生的動作知道學生的學習狀況。例如學生舉手,老師可對學生不懂的部份加以說明,提高學生的學習效率。 本研究將攝影機架設在階梯教室前面以擷取學生上課影像。系統先定位教室椅背高度線,並取出影像前景顏色。藉由motion與前景顏色資訊整合判斷出影像前景點。接著利用影像前景點為種子進行region growing,並將擴展出的regions利用region combination演算法定位學生物件。本系統使用學生物件的組成關係變化辨識六種動作,分別為舉右手、舉左手、舉雙手、趴下、站立與正常坐姿。實驗結果顯示提出方法可以解決一些環境的問題,並對實驗遇到其他問題有分析與討論。 最後本研究還有能改進的部份,未來希望能整合其他資訊或者更適合的方法讓本研究更完整。
  • Item
    利用RGB-D Sensors進行人類動作的分析
    (2013) 胡碩宸; Shuo-Chen Hu
    本研究利用視訊資料進行人類動作的分析,目的在於發展一套通用的人類動作分析技術可以應用在不同的領域上,如公共安全:機場、地鐵、體育館、購物中心等公共區域或是大樓中的自動化監控系統,偵測是否有人有異常行為(例如破壞公共區域)。或者居家照護系統:偵測家裡的孩童或老人是否有跌倒或爬到高處等危險的行為,若有危險行為發生便通報家屬及照護人員。   本研究利用微軟所開發的RGB-D Sensors(亦即Kinect)來擷取人體3D關節資訊,並計算關節夾角當作人類姿勢的特徵向量,由於這些特徵向量維度極高,因此我們利用流形學習(manifold learning)之等構映圖(Isomap)進行降維,並在低維度的等構映圖空間進行基本動作的切割與分群。接著將每一群的基本動作給定一個語意上的闡述並形成一個編碼書(codebook),最後此編碼書可以用來對測試者進行動作的辨識。