資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    基於攝影機的多人健身運動偵測與辨識
    (2024) 張吳嘉; Chang, Wu-Jia
    大多數健身運動追蹤研究主要以單人追蹤進行,單人追蹤可以記錄的訓練資訊,包含:動作辨識、動作計數、重量辨識、訓練時間以及準確度分析。然而在健身房環境中同時會有多人使用各種器材,僅進行單人追蹤會無法捕捉到多人的運動情形。利用攝影機的多人追蹤技術,可以同時對健身區域進行大範圍的偵測與追蹤,而不局限於單人追蹤。本研究提出基於攝影機的多人健身運動偵測與辨識方法,拍攝廣角的畫面藉以同時涵蓋多樣健身器材,處理這些器材使用者的訓練影像資訊。首先,對健身影片進行人體偵測,找出畫面中所有人物的位置。由於訓練器材的位置固定而人員則是隨意走動,利用物件交集(Intersection Over Union, IOU)方法,可以定位出正在使用健身器材的人物。對於這些訓練者,利用人體姿態估計方法記錄使用者的運動資訊,辨識划船、肩推、胸推、上斜胸推、腿部屈伸等五種不同的健身動作,並計算運動者在該器材的動作次數。除此之外,由於健身動作可能被其他移動的人員所遮蔽,造成健身動作辨識與計次的判斷出現錯誤,因此藉由多攝影機的協調建立補償機制,改善在多人環境中因為遮擋產生的辨識問題。本研究根據健身房的實際情形拍攝,未刻意安排訓練過程,使用者根據自身習慣自由的選擇訓練動作與次數。為了驗證補償機制是否改善遮擋產生的問題,會確保拍攝的每部影片中都有遮擋情形發生。最後設計三項實驗用以驗證偵測與辨識方法之效果。根據實驗結果,系統可以利用物件交集方式區分出不同人物的運動過程,在多人的環境中區分出運動與非運動之人員,並且辨識使用者訓練的動作與次數。在發生遮擋情況時,加入補償機制減少運動次數漏檢情形發生,補償後的次數回復率為52%,改善因為遮擋產生的辨識問題。
  • Item
    基於攝影機的自由重量訓練追蹤
    (2024) 林厚廷; Lin, Hou-Ting
    在運動中利用自我監控(Self-Monitoring)的機制,紀錄運動過程來量化運動成效,可以提供訓練者反饋同時增強訓練者對運動效果的信心。而重量訓練(Weight Training )是一種抵抗自身外部重量的阻力訓練,需要根據自身需求瞭解訓練目標,規劃訓練內容並執行。因此,在訓練過程中紀錄下訓練動作、重量、次數、組數和訓練/休息時間五項關鍵資訊,可以幫助訓練者評估訓練品質、衡量進步幅度以及追蹤長期訓練計畫。本研究利用電腦視覺技術,提出非接觸式的重量訓練追蹤方法。透過攝影機拍攝訓練者與訓練設備,將影像利用人體姿態估計結合物件偵測與影像分割技術,獲取人體動作與訓練設備的基礎資訊。接著,配合動作辨識模型,根據訓練者實際的自由重量訓練模式,自動追蹤動作、次數、組數、重量與訓練/休息時間五項重量訓練關鍵資訊。本研究共收集 17 位訓練者分別執行三個自由重量訓練動作的實際訓練影像,並由三個視角同時拍攝,實驗資料集共 153 部影片。針對追蹤方法進行驗證評估,內容包括五項紀錄項目。實驗結果顯示,在完整拍攝人體動作與訓練設備的多視角攝影條件下, 本研究提出的方法能準確追蹤 17 位訓練者於不同視角的訓練動作與執行組數,平均準確率可達 100% ; 此外,次數追蹤於各視角之平均F1-Score可達 0.98 ; 重量追蹤則於不同視角之準確率達 96% ; 訓練/休息時間追蹤能在 8 秒誤差容忍情況下,平均準確率達 100%, 2-6 秒誤差容忍情況下,各視角平均準確率為 93% 。綜合以上實驗結果支持所提出追蹤方法,能有效追蹤五項重量訓練內容並記錄。
  • Item
    基於攝影機的機械式器材訓練追蹤
    (2024) 廖育霆; Liao, Yu-Ting
    重量訓練是一種有效的健身方法,其能夠增強肌肉力量、提高新陳代謝和改善體態。而在每次訓練中記錄自己的運動過程與數據,能夠幫助個人規劃適當的訓練內容,提升運動效果,建立和維持健康的運動習慣。在真實健身房中,開放式環境使得主要器材周圍會有許多其他器材和非訓練者,用於自動追蹤的攝影機,擺放位置受到諸多限制,無法放置於走道或離器材太近的地方,並且移動的非訓練者會對拍攝的訓練過程產生遮擋,影響訓練追蹤的效果。本研究提出基於攝影機的單人機械式器材訓練追蹤方法,使用攝影機拍攝訓練者與訓練器材,透過人體姿態估計與物件偵測,獲得人體關鍵點與訓練器材的資訊,接著藉由獲得的資訊篩選出受到遮擋影響的關鍵點資訊進行過濾,再以KNN(k-Nearest Neighbor)插值法補償過濾掉的關鍵點,預測訓練者在遮擋時間的動作軌跡,根據補償過後的關鍵點資訊,推測出正確的動作次數。本研究設計兩種實驗,分別檢驗單攝影機及多攝影機下補償方法的成效,實驗影片由三個視角同時拍攝,收集6個訓練者分別進行肩推、胸推、腿推的多部訓練影像,共180部影片。實驗結果顯示,在單一攝影機條件下,補償後的次數估計準確度較補償前提升5.6%,在多攝影機條件下,補償後的平均準確率可達98.9%,重量追蹤在不同視角下,平均準確率可達94.6%,綜合以上實驗結果,說明本研究提出的補償方法可以減少環境對於自動追蹤的干擾,提升追蹤準確度。
  • Item
    小提琴姿勢變化即時偵測分析
    (2021) 胡雯; Hu, Wen
    小提琴的音色雖然優美,但對於初學者而言,一開始的學習是既枯燥又乏味的,拉奏出的琴音也十分不悅耳,需要長時間練習,才能慢慢掌握到正確的演奏姿勢。小提琴教師除了在課堂中教導音樂知識,也會即時糾正學生錯誤的姿勢。然而,初學者在自我練習時,若無老師或陪練員在身旁指教引導,大多無法做到接近標準的動作,更難意識到自己的錯誤,一旦習慣使用錯誤的姿勢練習,不僅對提升演奏技巧造成阻礙,也容易加大肌肉跟骨骼的傷害。本研究使用人體姿勢偵測方法進行小提琴姿勢正確度判定,使用攝影鏡頭拍攝記錄初學者練習時的狀態,以每秒30幀的取樣速率轉換成圖像,採用OpenPose開放式函式庫,在每張影像幀中擷取人體各部位的關節位置,偵測其人體骨架,同時計算人體關節角度,藉以判定小提琴拉奏姿勢,將這些資料進行滑動窗口的連續影像處理,系統結果呈現練習期間各種拉奏狀態出現的時間點,並依照狀態百分比給予評語。透過聲音回饋語音播放錯誤之姿勢,讓學生可以在練習時即時得知需要修正之處,練習結束後能通過紀錄了解自身的拉奏狀態。在課堂外的練習時間,使用自動化系統減輕家長陪練的負擔,也能隨時通過紀錄了解孩子的拉奏狀態,同時,導師可查看學員練習紀錄做分析與判斷,進而對學生的學習給予指導,進行長期的規劃和調整。