資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於人體姿勢估計之跆拳道側踢分析
    (2023) 翁驊成; Weng, Hua-Cheng
    在跆拳道品勢 (Taekwondo Poomsae) 比賽或訓練中,評估該運動表現唯基於專家及教練的觀察,並根據其自身經驗會有不同的想法,存在多種公平性問題,此外,教練也無法全天候指導所有學員,人們對於量化評價方法和工具之需求日益增加。然而,跆拳道快速的肢體動作與結構極端繁複的技術,使量化困難且不易評估。跆拳道品勢單元技術中,側踢 (Side Kick) 屬於較複雜、評分比重較高的項目,因此,本論文針對側踢先行試驗,我們以臺北市立龍山國中以及國立臺灣師範大學的跆拳道品勢選手作為研究對象,並參考專家建議之評分標準,提出基於人體姿勢估計 (Human Pose Estimation) 之跆拳道側踢分析,通過專業認證的跆拳道側踢評分系統 (Taekwondo Side Kick Assessment System, SideKick),能夠有效地量化選手運動數據,分析並評估其側踢表現。 本研究中,我們首先建立了具高度公信力的跆拳道側踢資料集,由專業品勢教練進行動作質量評分;接著透過人體姿勢估計的方式,偵測人體關節點座標,精確獲取肢體運動角度及高度變化數據,使得運動特徵不易受場景影響,將攝影鏡頭校正難度降低;最後,我們參考專家提供之側踢建議量化特徵,分析各特徵的重要性排序,並利用機器學習的方式,訓練運動時空特徵及專家建議特徵,來預測選手整體側踢表現分數。 實驗以均方根誤差與交叉驗證評估多種回歸模型方法,最終選擇卷積神經網路模型,作為系統之評分模組。結果顯示實際應用之誤差為0.69,經信度檢驗,其結果也達顯著相關,在容許誤差為1的範圍內,準確率達86%。本研究提出之SideKick系統不需花費大量金錢及人力,且錄製設備取得容易。學員們能藉由本系統了解自身能力,教練們也可以在不限任何時間或地點下指導學員,提升團體訓練效益,並為未來遠程跆拳道品勢評價系統奠定基礎。
  • Item
    基於AlphaZero General Framework實現Breakthrough遊戲
    (2019) 吳天宇; Wu, Tian-Yu
    在現今人工智慧電腦對局領域中,多數棋類的頂尖程式,都以AlphaZero的開發框架獨占鰲頭,棋力遠超以往傳統的程式,然而此種架構中有許多研發內容並不因不同棋類的規則而有所不同,當需要研發新種類的對局程式時將會有許多重複的前置開發成本。 故本論文中以C++實作遊戲規則及搜尋樹處理,以Python與TensorFlow套件實作類神經網絡訓練,兩者結合出易讀且運行效率較高的通用型AlphaZero框架的程式,此框架能夠讓使用者只需更改遊戲規則,即可開始AlphaZero的訓練模式。相較於GitHub相關開源碼中,Surag Nair先生全部以Python語言開發的alpha-zero-general程式,在突圍棋(Breakthrough)運行上,單執行緒速度效能可提升77.8%。 此外,本論文另外實作並測試三個可能的改良方法,用於提升整體AlphaZero訓練流程的棋力。其修改點並不因不同棋類規則而有所不同,目的在於讓後續能套用至通用型AlphaZero框架的棋類也能夠受益。分別是對訓練資料進行增量的Replay方法、應用MMoE(Multi-Gate Mixture-of-Experts)類神經網路架構於AlphaZero中欲增強網路模型的預測能力,以及利用改良原版AlphaZero中如何贏得越快越好的Quick Win方法,將針對類神經網路的Label更改標記方式與蒙地卡羅樹搜尋演算法進行改良。