資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    應用兩階段生成模型於會議摘要之研究
    (2023) 黃怡萍; Huang, Yi-Ping
    近年來,由於疫情的影響和遠端工作的普及,線上會議和視訊交流平台的使用 變得更加廣泛。但隨之而來的問題是,會議記錄往往包含許多分散的資訊,要 在大量的對話中擷取和理解關鍵資訊是困難的,且隨著會議越來越頻繁,意味 著參與者需要在有限的時間內掌握會議的要點,以便在忙碌的日程中做出明智 的決策。在這樣的情境下,能夠從會議紀錄中自動辨識和摘要出關鍵資訊的技 術變得更為重要。自動文件摘要主要分為擷取式 (Extractive) 和重寫式 (Abstractive) 兩種方 法,擷取式摘要透過計算原始文件中每個句子的重要性分數,選擇得分高的句 子並將它們組合起來成為摘要。重寫式摘要透過對原始文件的理解重新改寫句 子,生成出一個簡潔且包含原始文件中核心內容的摘要。由於對話中的話語經 常是不流暢且資訊分散的,使用擷取式摘要容易擷取出不完整的句子,造成可 讀性不高。目前在會議摘要任務中,主要的應用是能夠將原始語句改寫的重寫 式摘要。雖然已有許多相關的研究被提出,重寫式的方法應用在會議摘要中仍 面臨幾個普遍性的限制,包括輸入長度問題、複雜的對話結構,以及缺乏訓練 資料與事實不一致,而這些問題也是提高會議摘要模型效能的關鍵。本論文專注在「輸入長度問題」和「對話式結構」的研究,提出了一個先 擷取後生成的會議摘要模型架構,在擷取階段設計了三種方法來選擇重要的文 本片段,分別是異質圖神經網路模型、對話語篇剖析和文本相似度。在生成階 段使用先進的生成式預訓練模型。實驗結果顯示,提出的方法透過微調基線模 型,可以達到效果提升。