資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
3 results
Search Results
Item 劇本文件探勘與廣告推薦之研究(2016) 沈信佑; Shen, Hsin-You本論文的研究議題,主要發想是因為觀察在目前電視劇之後的廣告時段中,大部分廣告播映的時機點都不一定恰當,而且廣告播映都需要人力排程,費時費力;此外,在觀看戲劇節目的經驗中,每次看完一個段落的戲劇,接著就會進入一段對觀眾而言,很漫長且無趣的廣告期,導致在此時間內有不少的觀眾會選擇轉去其他台,先收看他台正在播放的戲劇或節目,所以在此期間廠商的廣告效益就會因此而降低。因此本論文希望建立自動化劇本分析與廣告推薦系統,先經由分析與探勘劇本中重要的特徵詞,目的在於找出有效且具高準確率的模型,使推薦播出的廣告可以吸引觀眾目光,得到廣告商品的最大效益。 本論文實驗資料分別由兩種來源取得:第一種來源從金穗獎劇本找出12個劇本做為劇本文件資料,第二種來源為隨機取得的一些廣告群做為廣告商品資料庫。經由本論文所提方法實驗之後,最後會與人力評斷的結果互相比對,用來驗證本實驗各項結果是否成功,實驗結果評估對象包含各段落重點度與最佳之推薦廣告。 研究方法以兩項目標為導向:包含(1)計算各段落重點度,與(2)推薦最佳廣告。為了計算各段落重點度,首先需找出劇本中幫助分析重點度的特徵詞,這些特徵詞將是日後分析重點度時重要的關鍵。而在最佳廣告推薦方面,於每個段落內先找出所有特徵詞Na,選取每個段落排名前三名的Na詞,接著使用廣義知網找出延伸詞,幫助劇本內容與廣告商品的聯結,然後再找出重點度特徵詞後,就可以分析劇本中各段落的評分狀況,每個段落會得出最佳推薦的廣告,最後再供廣告商選擇那些段落需下廣告,詳細的步驟與方法本文內會再敘述。對於實驗結果,本研究以準確度當做評估的標準。Item 利用廣義知網及維基百科於劇本文件之廣告推薦(2016) 陳信裕; Chen, Sin-Yu本論文的研究議題,主要是因為觀察到目前電視劇進入廣告時段時,大部分的廣告內容很枯燥乏味又冗長,而且廣告和電視劇的內容又不相關,導致在此時會有不少觀眾會選擇轉到其他電視台,先觀看其他電視台的電視劇,或是忙一些手邊事情,所以就造成這個時段的廣告廠商效益因此降低,而且廣告播映都需使用人力排程,費時又費力。因此本論文希望建立一個自動化劇本分析與廣告推薦系統,先從劇本內容分析與探勘重要的特徵詞,作為模型中有效且具高準確率的特徵,讓所推薦的廣告在播出時能夠吸引觀眾的目光,使廣告商品可以得到最大效益。 本論文實驗資料來源分別由兩種取得:第一種來源是從金穗獎劇本網站中找出12個劇本做為劇本文件資料,第二種來源是從維基百科中搜尋廣告商品,取得廣告商品簡介做為廣告商品資料庫。經由本論文所提方法實驗之後,最後會以自動化的方式互相比對,用來驗證本實驗各項結果是否成功,實驗結果評估對象包含劇本重點度為4及5分的段落與最佳廣告之推薦。 研究方法以兩項目標為導向:包含(1)自動化計算各段落重點度,與(2)推薦最佳廣告。為了計算各段落重點度,使用先前研究方法自動化找出劇本中幫助分析重點度的特徵詞,這些特徵詞將是分析重點度時重要的關鍵。而在最佳廣告推薦,於重點度為4及5分的段落內先找出所有特徵詞Na,接著使用廣義知網找出特徵詞Na上兩層的延伸詞,作為幫助劇本段落內容與廣告商品之間的聯結,經由自動化比對後,本研究將依據重點度為4及5分的段落特性,進而得出最佳推薦的廣告,最後所得到的實驗結果再提供給廣告商選擇,讓他們選擇在哪些段落可以下與自家產品相關的廣告,詳細的步驟與方法本文內會再敘述。對於實驗結果,本研究以準確度當做評估的標準。Item 使用廣義知網於情感詞彙之極性分析研究(2015) 陳傳生; Chen, Chuan-Sheng近幾年隨著網路的快速發展,我們可以根據自己的需求,很方便的找到各式各樣相關的資料。在消費前,人們往往習慣於收集評論和分析做為參考;而評論中出現的情感詞彙更是影響使用者看法的指標。採用人工的方式找出意見詞彙,雖然準確度高,卻相當耗費時間和人力,更永遠不可能趕上資訊產生的速度。 在此本論文提出一種非監督的方法,過程不需要人工的介入。主要目的是分析電影領域的評論文章,從中找出帶有情感的詞彙,並給予極性。本論文分兩大部分處理此問題,第一部分透過中文的語法規則找出情感詞彙可能出現的位置,收集這些位置出現的詞彙做為種子,接著透過廣義知網進行擴充。本研究統計廣義知網對部分詞彙情緒標記的正負數目,給予一個類別中的成員相同的極性。 在第二部分中,針對國立臺灣大學情緒詞詞典NTUSD(舊版)進行斷詞分析,再次透過廣義知網擴充,找出可能的情緒詞彙。對於無法由廣義知網部分詞彙的情緒標記而得到極性的詞彙,和NTUSD(舊版)進行完全比對,試著納入更多的擴充詞彙。最後利用前幾步驟中得到的類別整體極性,為帶有複雜概念結構的詞彙分類極性。 結合兩部分後,本研究以人工方式選出的980個情緒詞彙做測試,實驗結果顯示可以得到92.48%的正確率。